Foundations of Physics

, Volume 44, Issue 9, pp 960–972 | Cite as

Harmonic Oscillator Trap and the Phase-Shift Approximation

  • H. S. Köhler


The energy-spectrum of two point-like particles interacting in a 3-D isotropic Harmonic Oscillator (H.O.) trap is related to the free scattering phase-shifts \(\delta \) of the particles by a formula first published by Busch et al. It is here used to find an expression for the shift of the energy levels, caused by the interaction, rather than the perturbed spectrum itself. In the limit of high energy (large quantum number \(n\) of the H.O.) this shift (in H.O. units) is shown to be given by \(\Delta =-2\frac{\delta }{\pi }\), also exact in the limit of infinite scattering length (\(\delta =\pm \frac{\pi }{2}\)) in which case \(\Delta =\mp 1\). Numerical investigation shows that this expression otherwise differs from the exact result of Busch et al., by less than \(\frac{1}{2}\,\%\) except for \(n=0\) when it can be as large as \(\approx \)2.5 %. This result for the energy-shift is well known from another exactly solvable model, namely that of two particles interacting in a spherical infinite square-well trap (or box) of radius \(R\) in the limit \(R\rightarrow \infty \), and/or in the limit of large energy. It is in solid state physics referred to as Fumi’s theorem. It can be (and has been) used in (infinite) nuclear matter calculations to calculate the two-body effective interaction in situations where in-medium effects can be neglected. It is in this context referred to as the phase-shift approximation a term also used throughout this report.


Quantum mechanics Nuclear physics Scattering 


  1. 1.
    Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSGoogle Scholar
  2. 2.
    Köhl, M., Moritz, H., Stöferele, T., Gunter, K., Esslinger, T.: Fermionic atoms in a three dimensional optical lattice: observing fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005)Google Scholar
  3. 3.
    Köhler, H.S.: arXiv:1110.0039 [nucl-th]
  4. 4.
    Block, M., Holthaus, M.: Pseudopotential approximation in a harmonic trap. Phys. Rev. A 65, 052102 (2002)ADSGoogle Scholar
  5. 5.
    Rotureau, J.: Interaction for the trapped fermi gas from a unitary transformation of the exact two-body spectrum. Eur. Phys. J. 67, 153 (2013)ADSGoogle Scholar
  6. 6.
    Yang, C.-J., Rotureau, J., Barrett, B. R., van Kolck, U.: Two nucleons in a harmonic-oscillator trap with chiral potential: uncoupled channels. Preprint (2014)Google Scholar
  7. 7.
    Busch, T., Englert, B.-G., Rzazewski, K., Wilkens, M.: Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)Google Scholar
  8. 8.
    Suzuki, A., Liang, Y., Bhaduri, R.K.: Two-atom energy spectrum in a harmonic trap near a Feshbach resonance at higher partial waves. Phys. Rev. A80, 033601 (2009)ADSGoogle Scholar
  9. 9.
    Friedel, J.: The distribution of electrons bound impurities in monovalent metals. Philos. Mag. 43, 153 (1954)Google Scholar
  10. 10.
    Fumi, F.G.: Vacancies in monovalent metals. Philos. Mag. 46, 1007 (1955)Google Scholar
  11. 11.
    Brueckner, K.A., Levinson, C.A., Mahmoud, H.M.: Two-body forces and nuclear saturation. 1. Central forces. Phys. Rev. 95, 217 (1954)ADSzbMATHGoogle Scholar
  12. 12.
    Fukuda, N., Newton, R.G.: Energy level shifts in a large enclosure. Phys. Rev. 103, 1558 (1956)ADSzbMATHGoogle Scholar
  13. 13.
    DeWitt, B.S.: Transition from discrete to continuum spectra. Phys. Rev. 103, 1565 (1956)ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    Riesenfeld, W.B., Watson, K.M.: Energy of a many-particle system. Phys. Rev. 104, 492 (1956)ADSzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gottfried, K.: In: W.A Benjamin (ed.), Quantum Mechanics (1966)Google Scholar
  16. 16.
    Roger, G.: Newton, Scattering Theory of Waves and Particles. McGraw-Hill Book Company, New York (1966)Google Scholar
  17. 17.
    Reifman, A., DeWitt, B.S.: Relations between bound-state problems and scattering theory. Phys. Rev. 101, 877 (1956)ADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mahan, G.D.: Many Particle Physics, 3rd edn. Plenum, New York (2000)Google Scholar
  19. 19.
    Brueckner, K.A. , Gammel, J.L., Kubis, J.T.: Binding energy of a neutron gas. Phys. Rev. 118 1095 (1960)Google Scholar
  20. 20.
    Sood, P.C., Moszkowski, S.A.: Energy of a low density neutron gas. Nucl. Phys. 21, 582 (1960)MathSciNetGoogle Scholar
  21. 21.
    Brueckner, K.A., Gammel, J.L.: Properties of nuclear matter. Phys. Rev. 109, 1023 (1958)ADSMathSciNetGoogle Scholar
  22. 22.
    Köhler, H.S.: Approximation to Brueckner theory for nucleon–nucleus collisions. Nucl. Phys. A415, 37 (1983)Google Scholar
  23. 23.
    Jonsell, S.: Interaction energy of two trapped bosons with long scattering lengths. Few-body Syst. 31, 255 (2002)ADSGoogle Scholar
  24. 24.
    Stöferle, T., Moritz, H., Günther, K., Köhl, M., Esslinger, T.: Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006)ADSGoogle Scholar
  25. 25.
    Ospelkaus, C., Ospelkaus, S., Humbert, L., Ernst, P., Sengstock, K., Bongs, K.: Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006)ADSGoogle Scholar
  26. 26.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York (1972)zbMATHGoogle Scholar
  27. 27.
    Luu, T., Savage, M.J., Schwenk, A., Vary, J.P.: Nucleon-nucleon scattering in a harmonic potential. Phys. Rev. C 82, 034003 (2010)ADSGoogle Scholar
  28. 28.
    Idziaszek, Z., Calarco, T.: Two atoms in an anisotropic harmonic trap. Phys. Rev. A 71, 050701(R) (2005)ADSGoogle Scholar
  29. 29.
    Lüscher, M.: Two-particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B354, 531 (1991)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of ArizonaTucsonUSA

Personalised recommendations