Foundations of Physics

, Volume 44, Issue 9, pp 905–922 | Cite as

The role of quantum recurrence in superconductivity, carbon nanotubes and related gauge symmetry breaking

Article

Abstract

Pure quantum phenomena are characterized by intrinsic recurrences in space and time. We use this intrinsic periodicity as a quantization condition to derive a heuristic description of the essential quantum phenomenology of superconductivity. The resulting description is based on fundamental quantum dynamics and geometrical considerations, rather than on microscopical characteristics of the superconducting materials. This allows us to investigate the related gauge symmetry breaking in terms of the competition between quantum recurrence and thermal noise. We also test the validity of this approach to describe the case of carbon nanotubes.

Keywords

Superconductivity Carbon-nanotubes Gauge symmetry breaking Flux quantization Quantum recurrence  Boundary conditions 

References

  1. 1.
    de Broglie, L.: Recherches sur la théorie des quanta. Ann. Phys. 3, 22 (1925)MATHGoogle Scholar
  2. 2.
    Lan, S.-Y., Kuan, P.-C., Estey, B., English, D., Brown, J.M., Hohensee, M.A., Müller, H.: A clock directly linking time to a particle’s mass. Science 339, 554–557 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Catillon, P., Cue, N., Gaillard, M.J., Genre, R., Gouanère, M., Kirsch, R.G., Poizat, J.-C., Remillieux, J., Roussel, L., Spighel, M.: A search for the de Broglie particle internal clock by means of electron channeling. Found. Phys. 38, 659–664 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Dolce, D.: Elementary spacetime cycles. Europhys. Lett. 102, 31002 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Dolce, D.: Compact time and determinism for Bosons: foundations. Found. Phys. 41, 178–203 (2011)ADSMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dolce, D.: Gauge interaction as periodicity modulation. Ann. Phys. 327, 1562–1592 (2012)ADSMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Solov’ev, E.A.: Classical approach in atomic physics. Eur. Phys. J. D 65, 331–351 (2011)Google Scholar
  8. 8.
    Stodolna, A.S., Rouzée, A., Lépine, F., Cohen, S., Robicheaux, F., Gijsbertsen, A., Jungmann, J.H., Bordas, C., Vrakking, M.J.J.: Hydrogen atoms under magnification: direct observation of the nodal structure of stark states. Phys. Rev. Lett. 110, 213001 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Little, W.A., Parks, R.D.: Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962)ADSCrossRefGoogle Scholar
  10. 10.
    Lurié, D., Cremer, S.: Superconductive zitterbewegung. Prog. Theor. Phys. 44, 300–302 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    Loder, F.: Magnetic flux periodicity of h/e in superconducting loops. Nat. Phys. 4(2), 112–115 (2007)CrossRefGoogle Scholar
  12. 12.
    Weinberg, S.: The Quantum Theory of Fields. Modern Applications, vol. 2. Cambridge University Press, Cambridge (1996). see par. 21.6CrossRefGoogle Scholar
  13. 13.
    ‘t Hooft, G.: The cellular automaton interpretation of quantum mechanics. arXiv:1405.1548
  14. 14.
    ‘t Hooft, G.: A mathematical theory for deterministic quantum mechanics, J. Phys: Conf. Ser. 67, 012015 (2007)Google Scholar
  15. 15.
    Wilczek, F.: Quantum time crystals, Phys. Rev. Lett. 109, 160401 (2012)Google Scholar
  16. 16.
    Yoshii, R., Takada, S., Tsuchiya, S., Marmorini, G., Hayakawa, H., Nitta, M.: Time crystal phase in superconducting ring. arXiv:1404.3519
  17. 17.
    Nambu, Y.: Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Goldstone, J.: Field theories with “superconductor” solutions, Il. Nuovo Cimento 19, 154–164 (1961)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    de Woul, J., Merle, A., Ohlsson, T.: Establishing analogies between the physics of extra dimensions and carbon nanotubes. Phys. Lett. B714, 44–47 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Dolce, D.: Classical geometry to quantum behavior correspondence in a virtual extra dimension. Ann. Phys. 327, 2354–2387 (2012)ADSMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sundrum, R.: Tasi 2004 lectures: to the fifth dimension and back 585–630. http://arxiv.org/abs/hep-th/0508134 (2005)
  24. 24.
    Csaki, C., Hubisz, J., Meade, P.: TASI lectures on electroweak symmetry breaking from extra dimensions 703–776. http://arxiv.org/abs/hep-ph/0510275 (2005)
  25. 25.
    Arkani-Hamed, N., Cohen, A.G., Georgi, H.: (de)constructing dimensions. Phys. Rev. Lett. 86, 4757–4761 (2001)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Son, D.T., Stephanov, M.A.: QCD and dimensional deconstruction. Phys. Rev. D69, 065020 (2004)ADSGoogle Scholar
  27. 27.
    Scherk, J., Schwarz, J.H.: How to get masses from extra dimensions. Nucl. Phys. B 153, 61–88 (1979)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Hosotani, Y.: Dynamical mass generation by compact extra dimensions. Phys. Lett. B 126, 309–313 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    Piazza, F., Collins, L.A., Smerzi, A.: Critical velocity for a toroidal Bose–Einstein condensate flowing through a barrier. J. Phys. B At. Mol. Phys. 46, 095302 (2013)ADSGoogle Scholar
  30. 30.
    Zinn-Justin, J.: Quantum field theory at finite temperature: an introduction. http://arxiv.org/abs/hep-ph/0005272 (2000)
  31. 31.
    Fernandez de Cordoba, P., Isidro, J.M., Perea, M.H.: Emergent quantum mechanics as a thermal ensemble. http://arxiv.org/abs/1304.6295 (2013)
  32. 32.
    Charlier, J.-C., Blase, X., Roche, S.: Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Altomare, F., Chang, A.: One-Dimensional Superconductivity in Nanowires. Wiley, Weinheim (2013)CrossRefGoogle Scholar
  34. 34.
    White, J.W.M.C.T.: Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Zou, K., Hong, X., Zhu, J.: Electron–electron interaction and electron–hole asymmetry in bilayer graphene. Phys. Rev. B 84, 085408 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Perali, A., Neilson, D., Hamilton, A.R.: High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Shanenko, A.A., Croitoru, M.D., Vagov, A.V., Axt, V.M., Perali, A., Peeters, F.M.: Atypical BCS-BEC crossover induced by quantum-size effects. Phys. Rev. A 86, 033612 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Perali, A., Bianconi, A., Lanzara, A., Saini, N.L.: The gap amplification at a shape resonance in a superlattice of quantum stripes: a mechanism for high Tc. Solid State Commun. 100, 181–186 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Kaluza, T.: On the problem of unity in physics. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972 (1921)Google Scholar
  40. 40.
    Klein, O.: Quantum theory and five-dimensional theory of relativity. Z. Phys. 37, 895–906 (1926)ADSMATHCrossRefGoogle Scholar
  41. 41.
    Witten, E.: Anti-de sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998)MATHMathSciNetGoogle Scholar
  42. 42.
    Dolce, D., Perali, A.: Probing the origin of particle’s mass in graphene systems (2013)Google Scholar
  43. 43.
    Domenech, O., Montull, M., Pomarol, A., Salvio, A., Silva, P.J.: Emergent gauge fields in holographic superconductors. JHEP 1008, 033 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Pollet, L., Prokof’ev, N.: Higgs mode in a two-dimensional superfluid. Phys. Rev. Lett. 109, 010401 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of CamerinoCamerinoItaly

Personalised recommendations