Appleby, D.M.: The Bell–Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 36, 1–28 (2005)
Article
MATH
MathSciNet
Google Scholar
Barrett, J., Kent, A.: Non-contextuality, finite precision measurement and the Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 35, 151–176 (2004)
Article
MATH
MathSciNet
Google Scholar
Bell, J.S.: On the Einstein–Podolsky–Rosen Paradox. Physics 1, 195–200 (1964)
Google Scholar
Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)
ADS
Article
MATH
Google Scholar
Bell, J.S.: The theory of local beables, CERN-TH.2035 (1975), Epistemological Letters 9 (1976). Dialectica 39, 85–96 (1985)
Article
MathSciNet
Google Scholar
Bell, J.S.: La nouvelle cuisine. In: Sarlemijn, A., Kroes, P. (eds.) Between Science and Technology, pp. 97–115. Elsevier, Amsterdam (1990)
Chapter
Google Scholar
Brown, H., Svetlichny, G.: Nonlocality and Gleason’s lemma. Part I. Deterministic theories. Found. Phys. 20, 1379–1387 (1990)
ADS
Article
MathSciNet
Google Scholar
Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)
MATH
Google Scholar
Bub, J.: Is von Neumann’s ‘no hidden variables’ proof silly?, deep beauty: mathematical innovation and the search for underlying intelligibility in the quantum World. In: Halvorson, H. (ed.), Cambridge University Press, Cambridge (2010)
Butterfield, J.: Bell’s theorem: what it takes. Br. J. Philos. Sci. 43, 41–83 (1992)
Article
MathSciNet
Google Scholar
Clifton, R.: Getting contextual and nonlocal elements-of-reality the easy way. Am. J. Phys. 61, 443–447 (1993)
ADS
Article
Google Scholar
Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. 2, 411 (2011)
ADS
Article
Google Scholar
Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006)
ADS
Article
MATH
MathSciNet
Google Scholar
Conway, J., Kochen, S.: The strong free will theorem. Notices AMS 56, 226–232 (2009)
MATH
MathSciNet
Google Scholar
Gill R.D.: Statistics, causality and Bell’s theorem, Stat. Sci. (to appear). arxiv.org/pdf/1207.5103
Goldstein, S., Tausk, D.V., Tumulka, R., Zanghi, N.: What does the free will theorem actually prove? Notices AMS 57, 1451–1453 (2010)
MATH
MathSciNet
Google Scholar
Hemmick, D.L., Shakur, A.M.: Bell’s Theorem and Quantum Realism: Reassessment in the Light of the Schrödinger Paradox. Springer, New York (2012)
Book
Google Scholar
Hermens, R.: The problem of contextuality and the impossibility of experimental metaphysics thereof. Stud. Hist. Philos. Mod. Phys. 42, 214–225 (2011)
Article
MATH
MathSciNet
Google Scholar
Hermens, R.: Conway-Kochen and the finite precision loophole, arxiv.org/pdf/1404.2114
Heywood, P., Redhead, M.: Nonlocality and the Kochen–Specker paradox. Found. Phys. 13, 481–499 (1983)
ADS
Article
MathSciNet
Google Scholar
’t Hooft, G: The free-will postulate in quantum mechanics, arxiv.org/pdf/quant-ph/0701097
Jaeger, G.: Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World. Springer, New York (2014)
Book
Google Scholar
Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Noûs 18, 569–589 (1984)
Article
MathSciNet
Google Scholar
Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)
Book
MATH
Google Scholar
Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)
MATH
MathSciNet
Google Scholar
Leifer, M.: Is the quantum state real? A review of \(\psi \)-ontology theorems. http://mattleifer.info/wordpress/wp-content/uploads/2008/10/quanta-pbr.pdf. Accessed 1 Feb 2014
Maudlin, T.: Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Wiley-Blackwell, Malden (2011)
Book
Google Scholar
Norsen, T.: Local causality and completeness: Bell vs Jarrett. Found. Phys. 39, 273–294 (2009)
ADS
Article
MATH
MathSciNet
Google Scholar
Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)
MATH
Google Scholar
Pitowsky, I.: Quantum Probability—Quantum Logic. Springer, Berlin (1989)
MATH
Google Scholar
Seevinck, M.P.: Parts and Wholes: An Inquiry into Quantum and Classical Correlations PhD Thesis, Utrecht University (2008). http://philsci-archive.pitt.edu/4583/. Accessed 1 Feb 2014
Seevinck, M.P., Uffink, J.: Not throwing out the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’. Explan. Predict. Confirm. 2, 425–450 (2011)
Article
Google Scholar
Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C. (eds.) Quantum Concepts in Space and Time, pp. 182–203. Oxford University Press, Oxford (1986)
Google Scholar
Stairs, A.: Quantum logic, realism, and value definiteness. Philos. Sci. 50, 578–602 (1983)
Article
MATH
MathSciNet
Google Scholar
von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)
Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement, arxiv.org/pdf/quant-ph/0107093
Wiseman, H.M.: The two Bell’s theorems of John Bell, arxiv.org/pdf/1402.0351