Foundations of Physics

, Volume 44, Issue 7, pp 781–791 | Cite as

Constraints on Determinism: Bell Versus Conway–Kochen

  • Eric Cator
  • Klaas Landsman


Bell’s Theorem from Physics 36:1–28 (1964) and the (Strong) Free Will Theorem of Conway and Kochen from Notices AMS 56:226–232 (2009) both exclude deterministic hidden variable theories (or, in modern parlance, ‘ontological models’) that are compatible with some small fragment of quantum mechanics, admit ‘free’ settings of the archetypal Alice and Bob experiment, and satisfy a locality condition akin to parameter independence. We clarify the relationship between these theorems by giving reformulations of both that exactly pinpoint their resemblance and their differences. Our reformulation imposes determinism in what we see as the only consistent way, in which the ‘ontological state’ initially determines both the settings and the outcome of the experiment. The usual status of the settings as ‘free’ parameters is subsequently recovered from independence assumptions on the pertinent (random) variables. Our reformulation also clarifies the role of the settings in Bell’s later generalization of his theorem to stochastic hidden variable theories.


Free will theorem Bell’s theorem Hidden variable theories Determinism 



The authors are indebted to Jeff Bub, Jeremy Butterfield, Dennis Dieks, Richard Gill, Hans Maassen, and Matt Leifer for various comments on this work (including predecessors).


  1. 1.
    Appleby, D.M.: The Bell–Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 36, 1–28 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barrett, J., Kent, A.: Non-contextuality, finite precision measurement and the Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 35, 151–176 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bell, J.S.: On the Einstein–Podolsky–Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  4. 4.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bell, J.S.: The theory of local beables, CERN-TH.2035 (1975), Epistemological Letters 9 (1976). Dialectica 39, 85–96 (1985)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bell, J.S.: La nouvelle cuisine. In: Sarlemijn, A., Kroes, P. (eds.) Between Science and Technology, pp. 97–115. Elsevier, Amsterdam (1990)CrossRefGoogle Scholar
  7. 7.
    Brown, H., Svetlichny, G.: Nonlocality and Gleason’s lemma. Part I. Deterministic theories. Found. Phys. 20, 1379–1387 (1990)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  9. 9.
    Bub, J.: Is von Neumann’s ‘no hidden variables’ proof silly?, deep beauty: mathematical innovation and the search for underlying intelligibility in the quantum World. In: Halvorson, H. (ed.), Cambridge University Press, Cambridge (2010)Google Scholar
  10. 10.
    Butterfield, J.: Bell’s theorem: what it takes. Br. J. Philos. Sci. 43, 41–83 (1992)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Clifton, R.: Getting contextual and nonlocal elements-of-reality the easy way. Am. J. Phys. 61, 443–447 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. 2, 411 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Conway, J., Kochen, S.: The strong free will theorem. Notices AMS 56, 226–232 (2009)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gill R.D.: Statistics, causality and Bell’s theorem, Stat. Sci. (to appear).
  16. 16.
    Goldstein, S., Tausk, D.V., Tumulka, R., Zanghi, N.: What does the free will theorem actually prove? Notices AMS 57, 1451–1453 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Hemmick, D.L., Shakur, A.M.: Bell’s Theorem and Quantum Realism: Reassessment in the Light of the Schrödinger Paradox. Springer, New York (2012)CrossRefGoogle Scholar
  18. 18.
    Hermens, R.: The problem of contextuality and the impossibility of experimental metaphysics thereof. Stud. Hist. Philos. Mod. Phys. 42, 214–225 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hermens, R.: Conway-Kochen and the finite precision loophole,
  20. 20.
    Heywood, P., Redhead, M.: Nonlocality and the Kochen–Specker paradox. Found. Phys. 13, 481–499 (1983)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    ’t Hooft, G: The free-will postulate in quantum mechanics,
  22. 22.
    Jaeger, G.: Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World. Springer, New York (2014)CrossRefGoogle Scholar
  23. 23.
    Jarrett, J.P.: On the physical significance of the locality conditions in the Bell arguments. Noûs 18, 569–589 (1984)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Leifer, M.: Is the quantum state real? A review of \(\psi \)-ontology theorems. Accessed 1 Feb 2014
  27. 27.
    Maudlin, T.: Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Wiley-Blackwell, Malden (2011)CrossRefGoogle Scholar
  28. 28.
    Norsen, T.: Local causality and completeness: Bell vs Jarrett. Found. Phys. 39, 273–294 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  30. 30.
    Pitowsky, I.: Quantum Probability—Quantum Logic. Springer, Berlin (1989)zbMATHGoogle Scholar
  31. 31.
    Seevinck, M.P.: Parts and Wholes: An Inquiry into Quantum and Classical Correlations PhD Thesis, Utrecht University (2008). Accessed 1 Feb 2014
  32. 32.
    Seevinck, M.P., Uffink, J.: Not throwing out the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’. Explan. Predict. Confirm. 2, 425–450 (2011)CrossRefGoogle Scholar
  33. 33.
    Shimony, A.: Events and processes in the quantum world. In: Penrose, R., Isham, C. (eds.) Quantum Concepts in Space and Time, pp. 182–203. Oxford University Press, Oxford (1986)Google Scholar
  34. 34.
    Stairs, A.: Quantum logic, realism, and value definiteness. Philos. Sci. 50, 578–602 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)Google Scholar
  36. 36.
    Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement,
  37. 37.
    Wiseman, H.M.: The two Bell’s theorems of John Bell,

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Science, Institute for Mathematics, Astrophysics, and Particle PhysicsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations