Skip to main content
Log in

Quantum Phase Space from Schwinger’s Measurement Algebra

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Schwinger’s algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking \(N\) distinct values, where \(N\) is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwinger, J.: Algebra of microscopic measurement. Proc. Natl. Acad. Sci. 45, 1542 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Schwinger, J.: Geometry of states. Proc. Natl. Acad. Sci. 46, 257 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. 46, 570 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Schwinger, J.: Quantum Kinematics and Dynamics, Advanced Book Program. Addison-Wesley, New York (1991)

  5. Schwinger, J.: Quantum Mechanics : Symbolism of Atomic Measurement. Springer, Berlin (2001)

    Book  Google Scholar 

  6. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  7. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1958)

    MATH  Google Scholar 

  8. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications, New York (1950)

    Google Scholar 

  9. Wigner, E.P.: On the correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  10. Groenewold, H.: On the principles of elementary quantum mechanics. Phys. A 12, 405 (1946)

    ADS  MATH  MathSciNet  Google Scholar 

  11. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Zachos, Z., Fairlie, D.B., Curtright, T.L.: Quantum Mechanics in Phase Space. World Scientific Publishing, Singapore (2005)

    MATH  Google Scholar 

  13. Ferrie, C., Emerson, J.: Framed Hilbert space: hanging the quasi-probability pictures of quantum systems. New J. Phys. 11, 063040 (2009)

    Article  ADS  Google Scholar 

  14. Gross, D.: Hudson’s theorem for finite dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67, 267 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ferrie, C., Emerson, J.: Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations. J. Phys. A 41, 352001 (2008)

    Article  MathSciNet  Google Scholar 

  17. Ferrie, C., Morris, R., Emerson, J.: Necessity of negativity in quantum theory. Phys. Rev. 82, 044103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Maki, Z.: An algebraic approach to the quantum theory of measurements. Prog. Theor. Phys. 84, 574 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Horwitz, L.P.: Schwinger algebra for quaternionic quantum mechanics. Found. Phys. 27, 1011 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wootters, W.K.: A Wigner function formulation of finite state quantum mechanics. Ann. Phys. 176, 1 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. Buot, F.A.: Method for calculating \({\rm TrH}^n\) in solid state theory. Phys. Rev. B 10, 3700 (1974)

    Article  ADS  Google Scholar 

  22. Galetti, D., De Toledo Piza, A.F.R.: An extended Weyl–Wigner transformation for special finite spaces. Physica 149A, 267 (1988)

  23. Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Wigner–Weyl correspondence in quantum mechanics for continuous and discrete systems—a Dirac-inspired view. J. Phys. A 39, 1405 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referee of an earlier version for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Watson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, P., Bracken, A.J. Quantum Phase Space from Schwinger’s Measurement Algebra. Found Phys 44, 762–780 (2014). https://doi.org/10.1007/s10701-014-9813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9813-1

Keywords

Navigation