Advertisement

Foundations of Physics

, Volume 44, Issue 7, pp 736–761 | Cite as

A Rigorous Analysis of the Clauser–Horne–Shimony–Holt Inequality Experiment When Trials Need Not be Independent

  • Peter Bierhorst
Article

Abstract

The Clauser–Horne–Shimony–Holt (CHSH) inequality is a constraint that local hidden variable theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumptions about the probability spaces available to a local hidden variable theory, such as assuming the state of the system is a discrete or absolutely continuous random variable, or assuming that repeated experimental trials are independent and identically distributed. In this paper, we do two things: first, show that the CHSH inequality holds even for completely general state variables in the measure-theoretic setting, and second, demonstrate how to drop the assumption of independence of subsequent trials while still being able to perform a hypothesis test that will distinguish Quantum Mechanics from local theories. The statistical strength of such a test is computed.

Keywords

Quantum theory Bell’s theorem Measure-theoretic probability  Bell inequalities Hypothesis test Hidden-variable theories 

Mathematics Subject Classification

81P15 81Qxx 

Notes

Acknowledgments

The author would like to thank Michael Mislove and Keye Martin for their support and guidance, as well as Gustavo Didier and Lev Kaplan for their helpful comments and suggestions. This work was partially supported by grant FA9550-13-1-0135 from the US Air Force Office of Scientific Research and Grant N00014-10-1-0329 P00004 from the US Office of Naval Research.

References

  1. 1.
    Bell, J.: On The Einstein Podolsky Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Clauser, J., Horne, A., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Pironio, S., et al.: Random numbers certified by Bell’s theorem. Nature 464, 1021–1024 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Fritz, T.: Beyond Bell’s theorem: correlation scenarios. New J. Phys. 14(10), 103001 (2012)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Brandenburger, H.J. Keisler.: Fiber products of measures and quantum foundations. URL http://pages.stern.nyu.edu/abranden/fpmqf-10-29-12.pdf. To appear in Logic and Algebraic Structures in Quantum Computing and Information. Lecture Notes in Logic, Association for Symbolic Logic, Cambridge University Press, Cambridge (2012)
  8. 8.
    Barrett, J., Collins, D., Hardy, L., Kent, A., Popescu, S.: Quantum nononlocality, Bell inequalities, and the memory loophole. Phys. Rev. A 66, 042111 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Gill, R.D.: Accardi Contra Bell (Cum Mundi): the impossible coupling. Math. Stat. Appl. Festschr. Constance van Eeden IMS Lect. Notes Monogr. 42, 133–154 (2003)Google Scholar
  10. 10.
    Hänggi, E., Renner, R., Wolf, S.: The impossibility of non-signaling privacy amplification. Theor. Comput. Sci. 486, 27–42 (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    Barrett, J., Colbeck, R., Kent, A.: Memory attacks on device-independent quantum cryptography. Phys. Rev. Lett. 110, 010503 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    van Dam, W., Gill, R.D., Grunwald, P.D.: The statistical strength of nonlocality proofs. IEEE Trans. Inf. Theory 51, 2812–2835 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, Y., Glancy, S., Knill, E.: Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A 84, 062118 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Chung, K.L.: A Course in Probability Theory. A Course in Probability Theory, 2nd edn. Academic Press, San Diego (1974)Google Scholar
  15. 15.
    Brandenburger, A., Yanofsky, N.: A classification of hidden-variable properties. J. Phys. A 41, 425302 (2008)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19(3), 357–367 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zhang, Y., Glancy, S., Knill, E.: Efficient quantification of experimental evidence against local realism. Phys. Rev. A 88, 052119 (2013).Google Scholar
  19. 19.
    Gisin, N.: Non-realism: deep Thought or a Soft Option? Found. Phys. 42, 80–85 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)Google Scholar
  21. 21.
    Pearle, P.M.: Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970)Google Scholar
  22. 22.
    Clauser, J., Horne, M.: Experimental consequences of objective local theories. Phys. Rev. Lett. 10(2), 526–535 (1974)ADSGoogle Scholar
  23. 23.
    Mermin, N.D., Garg, A.: Detector inefficiencies in the Einstein–Podolsky–Rosen experiment. Phys. Rev. D 35(12), 3831–3835 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    P. Bierhorst, A mathematical foundation for locality. Ph.D. thesis, Tulane University (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Mathematics DepartmentTulane UniversityNew OrleansUSA

Personalised recommendations