Skip to main content

Hiding Information in Theories Beyond Quantum Mechanics, and It’s Application to the Black Hole Information Problem


The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We are able to calculate the time it takes information to escape a black hole, assuming that information is preserved. In quantum mechanics, information should escape pure state black holes after half the Hawking photons have been emitted, but we find that this get’s modified in generalisations of quantum mechanics. Likewise the black-hole mirror result of Hayden and Preskill, that information from entangled black holes can escape quickly, also get’s modified. We find that although information exits the black hole as predicted by quantum theory, it is fairly generic that it fails to appear outside the black hole at this point—something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. For background reading, we refer the reader to the review of John Preskill [3].

  2. Modulo certain assumptions, the thermodynamical entropy of any theory is given in terms of the states N which can be distinguished by a physical device (based on an adaptation of the argument of von Neumann, used to justify the fact that the von Neumann entropy has a thermodynamical interpretation [34]). Since the Bekenstein bound is derived from thermodynamical considerations, logN is the entropy which should appear in the entropy bound for potential theories of quantum gravity which go beyond ordinary quantum theory.


  1. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976). doi:10.1103/PhysRevD.14.2460

    ADS  Article  MathSciNet  Google Scholar 

  2. Hawking, S.W.: The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395 (1982)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  3. Preskill, J: Do black holes destroy information? hep-th/9209058

  4. Banks, T., Peskin, M.E., Susskind, L.: Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B 244, 125 (1984)

    ADS  Article  MathSciNet  Google Scholar 

  5. Unruh, W.G., Wald, R.M.: On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 52, 2176 (1995)

    ADS  Article  MathSciNet  Google Scholar 

  6. Oppenheim, J., Reznik, B.: Fundamental destruction of information and conservation laws (2009, preprint). arXiv:0902.2361

  7. Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012v4

  8. Khalfin, L.A., Tsirelson, B.S.: Quantum and Quasi-Classical Analogs of Bell Inequalities, p. 441. World Scientific, Singapore (1985)

    Google Scholar 

  9. Tsirelson, B.S.: Some results and problems on quantum bell-type inequalities. Hadron. J. Suppl. 8(4), 329 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    ADS  Article  MathSciNet  Google Scholar 

  11. Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)

    ADS  Article  Google Scholar 

  12. Mielnik, B.: Generalized quantum mechanics. Commun. Math. Phys. 37, 221 (1974)

    ADS  Article  MathSciNet  Google Scholar 

  13. t’Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)

    ADS  Article  MathSciNet  Google Scholar 

  14. Aharonov, Y., Casher, A., Nussinov, S.: The unitarity puzzle and Planck mass stable particles. Phys. Lett. B 191, 51 (1987)

    ADS  Article  Google Scholar 

  15. Carlitz, R., Willey, R.: The lifetime of a black hole. Phys. Rev. D 36, 2336 (1987)

    ADS  Article  MathSciNet  Google Scholar 

  16. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013)

  17. Braunstein, S.L., Zyczkowski, K.: Better Late than Never: Information Retrieval from Black Holes (2009, preprint). arXiv:0907.1190v2

  18. Page, D.: Is black hole evaporation predictable? Phys. Rev. Lett. 44, 301 (1980)

    ADS  Article  Google Scholar 

  19. t’Hooft, G.: The black hole interpretation of string theory. Nucl. Phys. B 335, 138 (1990)

  20. Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). doi:10.1103/PhysRevD.48.3743

    ADS  Article  MathSciNet  Google Scholar 

  21. Smolin, J.A., Oppenheim, J.: Locking information in black holes. Phys. Rev. Lett. 96, 081302 (2006). hep-th/0507287

    ADS  Article  MathSciNet  Google Scholar 

  22. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 0709, 120 (2007)

  23. Braunstein, S.L., Zyczkowski, K.: Entangled black holes as ciphers of hidden information (2009). arXiv:0907.1190

  24. Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 2008, 065 (2008)

    Article  Google Scholar 

  25. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys. 269, 107 (2006). quant-ph/0512247

  26. Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A. The mother of all protocols: restructuring quantum information?s family tree (2006). quant-ph/0606225

  27. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007). doi:10.1103/PhysRevLett.98.080502

  28. Uhlmann, A.: The? transition probability? in the state space of a*-algebra. Rep. Math. Phys. 9, 273 (1976)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  29. Müller, M.P., Oppenheim, J., Dahlsten, O.C.: Unifying typical entanglement and coin tossing: on randomization in probabilistic theories. J. High Energy Phys. 2012, 1 (2012)

    Article  Google Scholar 

  30. Wootters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16, 391 (1986)

    ADS  Article  MathSciNet  Google Scholar 

  31. Braunstein, S.L., Patra, M.K.: Black hole evaporation rates without spacetime. Phys. Rev. Lett. 107, 071302 (2011). doi:10.1103/PhysRevLett.107.071302

    ADS  Article  Google Scholar 

  32. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. Müller, M.P.: J. Oppenheim. (in preparation)

  34. Müller, M.P., Ududec, C.: Structure of reversible computation determines the self-duality of quantum theory. Phys. Rev. Lett. 108, 130401 (2012). doi:10.1103/PhysRevLett.108.130401

    Article  Google Scholar 

  35. Bennett, C., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett 69, 20 (1992)

    MathSciNet  Google Scholar 

Download references


We would like to thank the organisers of the Horizons of Quantum Theory conference for the opportunity to present our work, and their wonderful hospitality. We gratefully acknowledge feedback on a draft from Samuel Braunstein, David Jennings, Don Page and Arun Pati. J.O. and M.M. are grateful to the Aspen Center for Physics and NSF Grant 1066293, where some of this research was completed. J.O. would like to thank the Royal Society for their support. O.D. acknowledges support from the National Research Foundation (Singapore). O.D. was frequently visiting Imperial College whilst undertaking this research. Research at Perimeter Institute for Theoretical Physics is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jonathan Oppenheim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, M.P., Oppenheim, J. & Dahlsten, O.C.O. Hiding Information in Theories Beyond Quantum Mechanics, and It’s Application to the Black Hole Information Problem. Found Phys 44, 829–842 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Black holes
  • Black hole information
  • Post-quantum
  • Generalised probabilistic theories