Foundations of Physics

, Volume 44, Issue 8, pp 829–842 | Cite as

Hiding Information in Theories Beyond Quantum Mechanics, and It’s Application to the Black Hole Information Problem

  • Markus P.  Müller
  • Jonathan Oppenheim
  • Oscar C. O. Dahlsten
Article

Abstract

The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We are able to calculate the time it takes information to escape a black hole, assuming that information is preserved. In quantum mechanics, information should escape pure state black holes after half the Hawking photons have been emitted, but we find that this get’s modified in generalisations of quantum mechanics. Likewise the black-hole mirror result of Hayden and Preskill, that information from entangled black holes can escape quickly, also get’s modified. We find that although information exits the black hole as predicted by quantum theory, it is fairly generic that it fails to appear outside the black hole at this point—something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised.

Keywords

Black holes Black hole information Post-quantum  Generalised probabilistic theories 

References

  1. 1.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976). doi:10.1103/PhysRevD.14.2460 ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hawking, S.W.: The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395 (1982)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Preskill, J: Do black holes destroy information? hep-th/9209058
  4. 4.
    Banks, T., Peskin, M.E., Susskind, L.: Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B 244, 125 (1984)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Unruh, W.G., Wald, R.M.: On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 52, 2176 (1995)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Oppenheim, J., Reznik, B.: Fundamental destruction of information and conservation laws (2009, preprint). arXiv:0902.2361
  7. 7.
    Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012v4
  8. 8.
    Khalfin, L.A., Tsirelson, B.S.: Quantum and Quasi-Classical Analogs of Bell Inequalities, p. 441. World Scientific, Singapore (1985)Google Scholar
  9. 9.
    Tsirelson, B.S.: Some results and problems on quantum bell-type inequalities. Hadron. J. Suppl. 8(4), 329 (1993)MATHMathSciNetGoogle Scholar
  10. 10.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Mielnik, B.: Generalized quantum mechanics. Commun. Math. Phys. 37, 221 (1974)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    t’Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Aharonov, Y., Casher, A., Nussinov, S.: The unitarity puzzle and Planck mass stable particles. Phys. Lett. B 191, 51 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Carlitz, R., Willey, R.: The lifetime of a black hole. Phys. Rev. D 36, 2336 (1987)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013)Google Scholar
  17. 17.
    Braunstein, S.L., Zyczkowski, K.: Better Late than Never: Information Retrieval from Black Holes (2009, preprint). arXiv:0907.1190v2
  18. 18.
    Page, D.: Is black hole evaporation predictable? Phys. Rev. Lett. 44, 301 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    t’Hooft, G.: The black hole interpretation of string theory. Nucl. Phys. B 335, 138 (1990)Google Scholar
  20. 20.
    Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). doi:10.1103/PhysRevD.48.3743 ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Smolin, J.A., Oppenheim, J.: Locking information in black holes. Phys. Rev. Lett. 96, 081302 (2006). hep-th/0507287 ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 0709, 120 (2007)Google Scholar
  23. 23.
    Braunstein, S.L., Zyczkowski, K.: Entangled black holes as ciphers of hidden information (2009). arXiv:0907.1190
  24. 24.
    Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 2008, 065 (2008)CrossRefGoogle Scholar
  25. 25.
    Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys. 269, 107 (2006). quant-ph/0512247
  26. 26.
    Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A. The mother of all protocols: restructuring quantum information?s family tree (2006). quant-ph/0606225
  27. 27.
    Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007). doi:10.1103/PhysRevLett.98.080502
  28. 28.
    Uhlmann, A.: The? transition probability? in the state space of a*-algebra. Rep. Math. Phys. 9, 273 (1976)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Müller, M.P., Oppenheim, J., Dahlsten, O.C.: Unifying typical entanglement and coin tossing: on randomization in probabilistic theories. J. High Energy Phys. 2012, 1 (2012)CrossRefGoogle Scholar
  30. 30.
    Wootters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16, 391 (1986)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Braunstein, S.L., Patra, M.K.: Black hole evaporation rates without spacetime. Phys. Rev. Lett. 107, 071302 (2011). doi:10.1103/PhysRevLett.107.071302 ADSCrossRefGoogle Scholar
  32. 32.
    Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Müller, M.P.: J. Oppenheim. (in preparation)Google Scholar
  34. 34.
    Müller, M.P., Ududec, C.: Structure of reversible computation determines the self-duality of quantum theory. Phys. Rev. Lett. 108, 130401 (2012). doi:10.1103/PhysRevLett.108.130401 CrossRefGoogle Scholar
  35. 35.
    Bennett, C., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett 69, 20 (1992)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Markus P.  Müller
    • 1
  • Jonathan Oppenheim
    • 2
  • Oscar C. O. Dahlsten
    • 3
    • 4
  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Physics and AstronomyUniversity College of London, and London Interdisciplinary Network for Quantum ScienceLondonUK
  3. 3.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK
  4. 4.Center for Quantum TechnologyNational University of SingaporeSingaporeSingapore

Personalised recommendations