Foundations of Physics

, Volume 44, Issue 6, pp 689–708 | Cite as

On the Possibility of Measuring the Unruh Effect

Article

Abstract

There is a persistent state of confusion regarding the nature of the Unruh effect. We will argue that, in contrast to some interpretations thereof, the effect does not represent any novel physics and that, by its very nature, the effect is fundamentally unmeasurable in all experiments of the kind that have been contemplated until now. Also, we discuss what aspects connected with this effect one might consider as possibilities to be explored empirically and what their precise meaning may be regarding the issue at hand.

Keywords

Quantum field theory in curved spacetime Unruh effect  Quantum electrodynamics Accelerated frames 

References

  1. 1.
    Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870–892 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Thirolf, P.G., Habs, D., Henig, A., Jung, D., Kiefer, D., Lang, C., et al.: Signatures of the Unruh effect via high power, short pulse lasers. Eur. Phys. J. D 55, 379 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Vanzella, D.A.T., Matsas, G.E.A.: Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect. Phys. Rev. Lett. 87, 151301 (2001) [gr-qc/0104030]Google Scholar
  4. 4.
    Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. Univ. of Chicago Press, Chicago (1992)Google Scholar
  5. 5.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Univ. Pr, Cambridge (1982)CrossRefMATHGoogle Scholar
  6. 6.
    Higuchi, A., Matsas, G.E.A., Sudarsky, D.: Bremsstrahlung and zero energy Rindler photons. Phys. Rev. D 45, 3308 (1992)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wald, R.M., Unruh, W.G.: What happens when an accelerating observer detects a Rindler particle? Phys. Rev. D29, 1047 (1984)ADSGoogle Scholar
  8. 8.
    Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008) arXiv:0710.5373 [gr-qc]
  9. 9.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Academic, New York (1980)Google Scholar
  10. 10.
    Pena, I., Chryssomalakos, C., Corichi, A., Sudarsky, D.: On the puzzle of Bremsstrahlung as described by coaccelerated observers. Phys. Rev. D 72, 084018 (2005) [gr-qc/0507040]Google Scholar
  11. 11.
    Bell, J.S., Leinaas, J.M.: Electrons as accelerated thermometers. Nucl. Phys. B 212, 131 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Yablonovitch, E.: Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic Casimir effect. Phys. Rev. Lett. 62, 1742 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Brodin, G., Marklund, M., Bingham, R., Collier, J., Evans, R.G.: Laboratory soft x-ray emission due to the Hawking-Unruh effect? Class. Quant. Grav. 25, 145005 (2008) arXiv:0712.2985 [hep-ph]
  14. 14.
    Schutzhold, R., Schaller, G., Habs, D.: Tabletop creation of entangled multi-keV photon pairs and the Unruh effect. Phys. Rev. Lett. 100, 091301 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Strassler, M.: Virtual Particles: What are they? http://profmattstrassler.com/articles-and-posts/particle-physics-basics/virtual-particles-what-are-they/ (2013). Accesed 26 June 2013
  16. 16.
    Rosu, H.C.: Hawking like effects and Unruh like effects: Toward experiments? Grav. Cosmol. 7, 1 (2001) [gr-qc/9406012]Google Scholar
  17. 17.
    Ispirian, K.A.: High energy experimental proposals for the study of Unruh (effect) radiation. Prob. Atomic. Sci. Technol. 2012N1, 209 (2012)Google Scholar
  18. 18.
    Martin-Martinez, E., Fuentes, I., Mann, R.B.: Using Berry’s phase to detect the Unruh effect at lower accelerations. Phys. Rev. Lett. 107, 131301 (2011) arXiv:1012.2208 [quant-ph]
  19. 19.
    http://www.extreme-light-infrastructure.eu (2013). Accesed 26 June 2013
  20. 20.
    Zeldovich, Y.B., Rozhansky, L.V., Starobinsky, A.A.: Emission by an accelerated electron. JETP Lett. 43, 523 (1986). Pisma Zh. Eksp. Teor. Fiz. 43, 407 (1986)ADSGoogle Scholar
  21. 21.
    Chen, P., Tajima, T.: Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83, 256 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Schutzhold, R., Schaller, G., Habs, D.: Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields. Phys. Rev. Lett. 97, 121302 (2006) [Erratum-ibid. 97, 139902 (2006)] [quant-ph/0604065]Google Scholar
  23. 23.
    Schutzhold, R., Maia, C.: Quantum radiation by electrons in lasers and the Unruh effect. Eur. Phys. J. D 55, 375 (2009) arXiv:1004.2399 [hep-th]
  24. 24.
    Narozhny, N.B., Fedotov, A.M., Karnakov, B.M., Mur, V.D., Belinskii, V.A.: Boundary conditions in the Unruh problem. Phys. Rev. D 65, 025004 (2001)Google Scholar
  25. 25.
    Fulling, S.A., Unruh, W.G.: Comment on ‘Boundary conditions in the Unruh problem’. Phys. Rev. D 70, 048701 (2004)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Chryssomalakos, C., Sudarsky, D.: On the geometrical character of gravitation. Gen. Rel. Grav. 35, 605 (2003) [gr-qc/0206030]Google Scholar
  27. 27.
    Earman, J.: The Unruh effect for philosophers. Stud. Hist. Philos. Mod. Phys. 42, 81 (2011)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Plantel Casa LibertadUniversidad Autónoma de la Ciudad de MéxicoMexicoMéxico
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexicoMéxico

Personalised recommendations