Foundations of Physics

, Volume 44, Issue 12, pp 1258–1268 | Cite as

Quantum Decoherence: A Logical Perspective

  • Sebastian Fortin
  • Leonardo Vanni


The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the logical structure of quantum properties corresponding to relevant observables acquires Boolean characteristics.


Logic Decoherence Lattice Boolean 


  1. 1.
    Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  2. 2.
    Zurek, W.: Pointer basis of quantum apparatus: into what mixtures does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)Google Scholar
  6. 6.
    Castagnino, M., Fortin, S., Laura, R., Lombardi, O.: A general theoretical framework for decoherence in open and closed systems. Classical Quant. Grav. 25, 154002 (2008)Google Scholar
  7. 7.
    Lombardi, O., Fortin, S., Castagnino, M.: he problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H.W., Hartmann, S., Okasha, S. (eds.) European Philosophy of Science Association (EPSA). Philosophical Issues in the Sciences, vol. 3, pp. 161–174. Springer, Berlin (2012)Google Scholar
  8. 8.
    Castagnino, M., Fortin, S.: Formal features of a general theoretical framework for decoherence in open and closed systems. Int. J. Theor. Phys. 52(5), 1379–1398 (2013)Google Scholar
  9. 9.
    Castagnino, M., Lombardi, O.: The self-induced approach to decoherence in cosmology. Int. J. Theor. Phys. 42, 1281 (2003)Google Scholar
  10. 10.
    Fortin, S., Lombardi, O.: Partial traces in decoherence and in interpretation: what do reduced states refer to? Found. Phys. 44, 426–446 (2014). doi: 10.1007/s10701-014-9791-3
  11. 11.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)CrossRefGoogle Scholar
  12. 12.
    Cohen, D.W.: An Introduction to Hilbert Space and Quantum Logic. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kiefer, C., Polarski, D.: Why do cosmological perturbations look classical to us? Adv. Sci. Lett. 2, 164–173 (2009)Google Scholar
  14. 14.
    Mittelstaedt, P.: Quantum Logic. D. Reidel Publishing Company, Dordrecht (1978)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard Univerity Press, Cambridge (1992)Google Scholar
  16. 16.
    Holik, F., Plastino, A., Saenz, M.: A discussion on the origin of quantum probabilities. Ann. Phys. 340(1), 293–310 (2014)Google Scholar
  17. 17.
    Redei, M., Summers, S.: Quantum probability theory. Stud. Hist. Philos. Sci. B 38(2), 390–417 (2007)Google Scholar
  18. 18.
    Gudder, S.P.: Stochastic Methods in Quantum Mechanics. North Holland, New York-Oxford (1979)zbMATHGoogle Scholar
  19. 19.
    Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  20. 20.
    Boole, G.: An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities. Macmillan, London (1854)Google Scholar
  21. 21.
    Sakurai, J.J.: Modern Quantum Mechanics, Revised edn. Addison-Wesley, New York (1994)Google Scholar
  22. 22.
    Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)Google Scholar
  23. 23.
    Kiefer, C., Polarski, D.: Emergence of classicality for primordial fluctuations: concepts and analogies. Ann. Phys. 7, 137–158 (1998)Google Scholar
  24. 24.
    Castagnino, M., Laura, R.: Minimal irreversible quantum mechanics : pure-state formalism. Phys. Rev. A 56, 108 (1997)Google Scholar
  25. 25.
    Laura, R., Castagnino, M.: Minimal irreversible quantum mechanics : the mixed states and the diagonal singularity. Phys. Rev. A 57, 4140 (1998)Google Scholar
  26. 26.
    Laura, R., Castagnino, M.: Functional approach for quantum systems with continuous spectrum. M. Phys. Rev. E 57, 3948 (1998)Google Scholar
  27. 27.
    Castagnino, M.: The classical regime of a quantum universe obtained through a functional method. Int. J. Theor. Phys. 38, 1333 (1999)Google Scholar
  28. 28.
    Castagnino, M., Laura, R.: Functional approach to quantum decoherence and the classical final limit. Phys. Rev. A 62, 022107 (2000)Google Scholar
  29. 29.
    Castagnino, M., Laura, R.: Functional approach to quantum decoherence and the classical final limit: the mott and cosmological problems. Int. J. Theor. Phys. 39, 1737 (2000)Google Scholar
  30. 30.
    Castagnino, M., Ordoñez, A.: Algebraic formulation of quantum decoherence. Int. J. Theor. Phys. 43, 695 (2004)Google Scholar
  31. 31.
    Castagnino, M.: The classical-statistical limit of quantum mechanics. Physica A 335, 511 (2004)Google Scholar
  32. 32.
    Castagnino, M.: The equilibrium limit of the casati-prosen model. Phys. Lett. A 357, 97 (2006)Google Scholar
  33. 33.
    Castagnino, M., Lombardi, O.: Self-induced decoherence and the classical limit of quantum mechanics. Phil. Sci. 72, 764 (2005)Google Scholar
  34. 34.
    Castagnino, M., Gadella, M.: The problem of the classical limit of quantum mechanics and the role of self-induced decoherence. Found. Phys. 36, 920 (2006)Google Scholar
  35. 35.
    Castagnino, M., Fortin, S.: Predicting decoherence in discrete models. Int J. Theor. Phys. 50(7), 2259 (2011)Google Scholar
  36. 36.
    Fortin, S., Lombardi, O., Castagnino, M.: Decoherence: a closed-system approach. Braz. J. Phys. 44, 138–153 (2014)Google Scholar
  37. 37.
    Antoniou, I., Laura, R., Tasaki, S., Suchaecki, Z.: Intrinsic irreversibility of quantum systems with diagonal singularity. Physica A 241, 737–772 (1997)Google Scholar
  38. 38.
    van Hove, L.: The approach to equilibrium in quantum statistics: a perturbation treatment to general order. Physica 23, 441 (1957)Google Scholar
  39. 39.
    van Hove, L.: The ergodic behaviour of quantum many-body systems. Physica 25, 268 (1959)Google Scholar
  40. 40.
    Castagnino, M., Lombardi, O.: Self-induced decoherence: a new approach. Stud. His. Phil. Mod. Phys. 35, 73–107 (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CONICET, Department of PhysicsFCEN (UBA)Buenos AiresArgentina

Personalised recommendations