Foundations of Physics

, Volume 44, Issue 6, pp 641–677 | Cite as

Manifesting the Quantum World

  • Ulrich Mohrhoff


In resisting attempts to explain the unity of a whole in terms of a multiplicity of interacting parts, quantum mechanics calls for an explanatory concept that proceeds in the opposite direction: from unity to multiplicity. Being part of the Scientific Image of the world, the theory concerns the process by which (the physical aspect of) what Sellars called the Manifest Image of the world comes into being. This process consists in the progressive differentiation of an intrinsically undifferentiated entity. By entering into reflexive spatial relations, this entity gives rise to (i) what looks like a multiplicity of relata if the reflexive quality of the relations is not taken into account, and (ii) what looks like a substantial expanse if the spatial quality of the relations is reified. If there is a distinctly quantum domain, it is a non-spatial and non-temporal dimension across which the transition from the unity of this entity to the multiplicity of the world takes place. Instead of being constituents of the physical world, subatomic particles, atoms, and molecules are instrumental in its manifestation. These conclusions are based on the following interpretive principle and its more direct consequences: whenever the calculation of probabilities calls for the addition of amplitudes, the distinctions we make between the alternatives lack objective reality. Applied to alternatives involving distinctions between regions of space, this principle implies that, owing to the indefiniteness of positions, the spatiotemporal differentiation of the physical world is incomplete: the existence of a real-valued spatiotemporal background is an unrealistic idealization. This guarantees the existence of observables whose values are real per se, as against “real by virtue of being indicated by the values of observables that are real per se.” Applied to alternatives involving distinctions between things, it implies that, intrinsically, all fundamental particles are numerically identical and thus identifiable with the aforementioned undifferentiated entity.


Interpretation Quantum mechanics Measurement problem Macroscopic objects Manifestation Localizable particles 


  1. 1.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, New York (2003)Google Scholar
  3. 3.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin/Heidelberg (2007)Google Scholar
  4. 4.
    Falkenburg, B.: Particle Metaphysics: A Critical Account of Subatomic Reality. Springer, Berlin Heidelberg (2007)Google Scholar
  5. 5.
    Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd, Revised edn, Springer, Berlin (1996)Google Scholar
  7. 7.
    Hegerfeldt, G.: Remark on causality and particle localization. Phys. Ref. D 10, 3320–3321 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    Hegerfeldt, G.C.: Instantaneous spreading and Einstein causality in quantum theory. Ann. Phys. (Berlin) 7, 716–25 (1998)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Hegerfeldt, G.C.: Particle localization and the notion of Einstein causality. In: Horzela, A., Kapuscik, E. (eds.) Extensions of Quantum Theory, pp. 9–16. Apeiron, Montreal (2001)Google Scholar
  10. 10.
    Malament, D.B.: In defense of dogma: why there cannot be a relativistic quantum mechanics of (localizable) particles. In: Clifton, R. (ed.) Perspectives on Quantum Reality, pp. 1–10. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  11. 11.
    Clifton, R., Halvorson, H.: No place for particles in relativistic quantum theories. Philosophy of Science 69, 1–28 (2002). Reprinted In: Butterfield, J., Halvorson, H. (eds.) Quantum Entanglements: Selected Papers Rob Clifton, pp. 225–261. Oxford University Press, Oxford (2004)Google Scholar
  12. 12.
    Ladyman, J., Ross, D., (with Spurrett, D., Collier, J.): Every Thing Must Go: Metaphysics Naturalized. Oxford University Press, New York (2007)Google Scholar
  13. 13.
    Esfeld, M., Lam, V.: Structures as the objects of fundamental physics. In: Feest, U., Rheinberger, H.J., Abel, G. (eds.) Epistemic Objects, pp. 3–16. Max Planck Institute for the History of Science, Berlin (2009)Google Scholar
  14. 14.
    Lam, V., Esfeld, M.: The structural metaphysics of quantum theory and general relativity. J. Gen. Philos. Sci. 43, 243–258 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., Rinkoski, M.T., Smith, C.T., Wotherspoon, T.D.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik (1932). English Translation: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)Google Scholar
  17. 17.
    Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik (1933). English Translation: General Principles of Quantum Mechanics. Springer, Berlin (1980)Google Scholar
  18. 18.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, pp. 46–47. Clarendon Press, Oxford (1958)zbMATHGoogle Scholar
  19. 19.
    Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum Mechanics and Path Integrals, Emended edn. Dover Publications, Mineola (2005)Google Scholar
  20. 20.
    Mohrhoff, U.: Quantum mechanics explained. Int. J. Quantum Info. 7(1), 435–458 (2009)zbMATHCrossRefGoogle Scholar
  21. 21.
    Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351(6322), 111–116 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Englert, B.-G., Scully, M.O., Walther, H.: The duality in matter and light. Sci. Am. (Int. Ed.) 271, 56–61 (1994)Google Scholar
  23. 23.
    Mohrhoff, U.: Objectivity, retrocausation, and the experiment of Englert, Scully, and Walther. Am. J. Phys. 67(4), 330–335 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Fuchs, C.: Question 2: Big Issues. What are the most pressing problems in the foundations of quantum mechanics today? In: Schlosshauer, M. (ed.) Elegance and Enigma: The Quantum Interviews. Springer, Berlin Heidelberg (2011)Google Scholar
  25. 25.
    von Glasersfeld, E.: An introduction to radical constructivism. In: Watzlawick, P. (ed.) The Invented Reality, pp. 17–40. Norton, New York (1984)Google Scholar
  26. 26.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures in Physics, vol. 3. Addison-Wesley, Boston (1965)Google Scholar
  27. 27.
    Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57(2), 117–120 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Wave-particle duality of C\(_{60}\) molecules. Nature 401, 680–682 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Bohr, N.: Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge (1934)zbMATHGoogle Scholar
  30. 30.
    Bohr, N.: Discussions with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher–Scientist, pp. 201–241. Library of Living Philosophers, Evanston (1949)Google Scholar
  31. 31.
    Bohr, N.: Quantum physics and philosophy–causality and complementarity. In: Bohr, N. (ed.) Essays 1958–1962 on Atomic Physics and Human Knowledge, pp. 1–7. Wiley Interscience, New York/London (1963)Google Scholar
  32. 32.
    Hubel, D.H.: Eye, Brain, and Vision. Scientific American Library, New York (1995)Google Scholar
  33. 33.
    Enns, J.T.: The Thinking Eye, the Seeing Brain: Explorations in Visual Cognition. Norton & Company, New York/London (2004)Google Scholar
  34. 34.
    Clark, A.: A Theory of Sentience. Oxford University Press, New York (2000)CrossRefGoogle Scholar
  35. 35.
    von Weizsäcke, C.F.: The Unity of Nature. Farrar, Straus, and Giroux, New York (1980)Google Scholar
  36. 36.
    Hilgevoord, J.: The uncertainty principle for energy and time II. Am. J. Phys. 66(5), 396–402 (1998)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Bell, J.S.: Against “measurement”. Phys. World 3, 33–40 (1990)Google Scholar
  38. 38.
    Bub, J.: Bananaworld: Quantum mechanics for primates. arXiv:1211.3062v2 [quant-ph] (2013)
  39. 39.
    Bub, J., Clifton, R.: A uniqueness theorem for “no collapse” interpretations of quantum mechanics. Stud. Hist. Phil. Mod. Phys. 27, 181–219 (1996)Google Scholar
  40. 40.
    Mohrhoff, U.: Interpreting bananaworld: a response to Bub’s Quantum mechanics for primates. arXiv:1212.3606v1 [quant-ph] (2012)
  41. 41.
    Bell, J.S.: On wave-packet reduction in the Coleman–Hepp model. In: Bell, J.S. (ed.) Speakable and Unspeakable in Quantum Mechanics, pp. 45–51. Cambridge University Press, Cambridge (1987)Google Scholar
  42. 42.
    Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237–248 (1972)Google Scholar
  43. 43.
    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Berlin (1995)zbMATHGoogle Scholar
  44. 44.
    Busch, P., Shimony, A.: Insolubility of the quantum measurement problem for unsharp observables. Stud. Hist. Phil. Mod. Phys. 27, 397–404 (1996)Google Scholar
  45. 45.
    Busch, P.: Can “unsharp objectification” solve the quantum measurement problem? Int. J. Theor. Phys. 37, 241–247 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    French, S.: Identity and Iiduality in quantum theory. In: Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy. (Summer 2011 Edition). Accessed 24 Nov 2013
  47. 47.
    French, S., Krause, D.: Identity in Physics: A Historical, Philosophical, and Formal Analysis. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  48. 48.
    Esfeld, M.: Ontic structural realism and the interpretation of quantum mechanics. Eur. J. Philos. Sci. 3(1), 19–32 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Ulfbeck, O., Bohr, A.: Genuine fortuitousness. Where did that click come from? Found. Phys. 31(5), 757–774 (2001)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Mohrhoff, U.: Making sense of a world of clicks. Found. Phys. 32(8), 1295–1311 (2002)CrossRefGoogle Scholar
  51. 51.
    Grupen, C., Shwartz, B.: Particle Detectors, 2nd edn. Cambridge Unversity Press, Cambridge (2008)CrossRefGoogle Scholar
  52. 52.
    Heisenberg, W.: The Physical Principles of Quantum Theory. English translation: Eckart, C., Hoyt, F.C., University of Chicago Press, Chicago (1930)Google Scholar
  53. 53.
    Hoffman, D.D.: Visual Intelligence: How We Create What We See. Norton & Company, New York (1998)Google Scholar
  54. 54.
    Elementary-Particle Physics Panel, National Research Council (U.S.).: Elementary-Particle Physics. National Academy Press, Washington, DC (1998)Google Scholar
  55. 55.
    Nicolai, H.: Quantum gravity: the view from particle physics. Invited Lecture at the conference Relativity and Gravitation: 100 Years after Einstein in Prague, June 25–29, 2012, Prague, Czech Republic. arXiv:1301.5481 [gr-qc] (2013)
  56. 56.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, 3rd edn. Pergamon, Oxford (1977)Google Scholar
  57. 57.
    Redhead, M.: Explanation. In: Knowles, D. (ed.) Explanation and its Limits, pp. 135–154. Cambridge University Press, Cambridge (1990)Google Scholar
  58. 58.
    Sellars, W.: Philosophy and the scientific image of man. In: Colodny, R. (ed.) Frontiers of Science and Philosophy, pp. 35–78. University of Pittsburgh Press, Pittsburgh (1962)Google Scholar
  59. 59.
    Eddington, A.S.: The Nature of the Physical World. MacMillan, New York (1929)zbMATHGoogle Scholar
  60. 60.
    Maudlin, T.: Descrying the world in the wave function. Monist 80(1), 3–23 (1997)CrossRefGoogle Scholar
  61. 61.
    Phillips, S.: Classical Indian Metaphysics. Open Court, Chicago/La Salle (1995)Google Scholar
  62. 62.
    Aurobindo, Sri: The Life Divine. Sri Aurobindo Ashram Publication Department, Pondicherry (2005)Google Scholar
  63. 63.
    Mohrhoff, U.: Consciousness in the quantum world: an Indian perspective. In: Corradini, A., Meixner, U. (eds.) Quantum Physics Meets the Philosophy of Mind: New Essays on the Mind-Body Relation in Quantum-Theoretical Perspective. de Gruyter, Berlin/New York (2014)Google Scholar
  64. 64.
    Schrödinger, E.: What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge (1944). Reproduced. In: Wilber, K. (ed.) Quantum Questions: Mystical Writings of the World’s Greatest Physicists, pp. 92–95. Shambala, Boston (2001)Google Scholar
  65. 65.
    Russell, B.: The Analysis of Matter. Routledge, London (1927/1992)Google Scholar
  66. 66.
    Barrow, J.-D., Tipler, F.J.: The Anthropic Cosmological Principle. Oxford University Press, Oxford (1988)Google Scholar
  67. 67.
    Rees, M.: Just Six Numbers: The Deep Forces That Shape the Universe. Basic Books, New York (2000)Google Scholar
  68. 68.
    Bostrom, N.: Anthropic Bias: Observation Selection Effects in Science and Philosophy. Routledge, New York (2002)Google Scholar
  69. 69.
    Mohrhoff, U.: The World According to Quantum Mechanics. World Scientific, Singapore (2011)zbMATHCrossRefGoogle Scholar
  70. 70.
    Mohrhoff, U.: Why the laws of physics are just so. Found. Phys. 32(8), 1313–1324 (2002)CrossRefGoogle Scholar
  71. 71.
    Wilczek, F.: The Lightness of Being: Mass, Ether, and the Unification of Forces. Basic Books, New York (2008)Google Scholar
  72. 72.
    Ladyman, J.: Structural Realism. In E.N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Summer 2013 Edition). Accessed 24 Nov 2013
  73. 73.
    French, S., Ladyman, J.: Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese 136, 31–56 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)Google Scholar
  75. 75.
    Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66, 753–767 (1998)ADSCrossRefGoogle Scholar
  76. 76.
    Cornford, F.M.: Plato and Parmenides. Trubner & Co., Kegan Paul, Trench, London (1939)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Sri Aurobindo International Centre of EducationPondicherryIndia

Personalised recommendations