Foundations of Physics

, Volume 44, Issue 6, pp 610–640 | Cite as

The New Quantum Logic

  • Robert B. Griffiths


It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.


Quantum mechanics Quantum logic Conceptual difficulties Consistent histories Unicity 



The work described here is based on research supported by the National Science Foundation through Grant PHY-1068331.


  1. 1.
    Laloë, F.: Do We Really Understand Quantum Mechanics?. Cambridge University Press, Cambridge, UK (2012)CrossRefGoogle Scholar
  2. 2.
    Griffiths, R.B.: A consistent quantum ontology. Stud. Hist. Phil. Mod. Phys. 44, 93–114 (2013). arXiv:1105.3932 CrossRefzbMATHGoogle Scholar
  3. 3.
    Schlosshauer, M.: Elegance and Enigma: The Quantum Interviews. Springer-Verlag, Berlin (2011)CrossRefGoogle Scholar
  4. 4.
    Mermin, N.D.: Annotated interview with a QBist in the making. (2013). arXiv:1301.6551
  5. 5.
    Feynman, R.: The Character of Physical Law. MIT Press, Cambridge, MA (1965)Google Scholar
  6. 6.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)CrossRefGoogle Scholar
  7. 7.
    Putnam, H.: The logic of quantum mechanics. In: Mathematics, Matter, and Method, pp. 174–197. Cambridge University Press, Cambridge, UK (1975)Google Scholar
  8. 8.
    Maudlin, T.: The tale of quantum logic. In: Ben-Menahem, Y. (ed.) Hilary Putnam, pp. 156–187. Cambridge University Press, Cambridge, UK (2005)Google Scholar
  9. 9.
    Bacciagaluppi, G.: Is Logic Empirical? In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 49–78. Elsevier, Amsterdam (2009).
  10. 10.
    Bell, J.S.: The theory of local beables. In: Speakable and Unspeakable in Quantum Mechanics, 2nd edn, pp. 52–62. Cambridge University Press, Cambridge (2004)Google Scholar
  11. 11.
    Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Phil. Mod. Phys. 34, 135–142 (2003)CrossRefGoogle Scholar
  12. 12.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, volume III: Quantum Mechanics. Addison-Wesley, Reading, MA (1965)Google Scholar
  13. 13.
    Wheeler, J.A.: The “Past” and the “Delayed-Choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, New York (1978)CrossRefGoogle Scholar
  14. 14.
    Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Bell, J. S.: On the einstein podolsky rosen paradox. Physics. 1,195–200, 1964. Reprinted in Bell, J. S. Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987), p. 14.Google Scholar
  16. 16.
    Bell, J. S.: La nouvelle cuisine. In: Sarlemijn, A and Kross, P (eds.), Between Science and Technology, pp. 97–115. Elsevier, Amsterdam, (1990). Reprinted in Bell, J. S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed. (Cambridge University Press, 2004), pp 232–248.Google Scholar
  17. 17.
    Hardy, L.: Quantum mechanics, local realistic theories and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem. Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)Google Scholar
  19. 19.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge, UK (2002).
  21. 21.
    von Neumann, J:. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin, (1932). English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955).Google Scholar
  22. 22.
    Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    DeWitt, B.S., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton, NJ (1973)Google Scholar
  24. 24.
    Pusey, M.F., Barrett, J and Rudolph, T.: On the reality of the quantum state. Nature Phys. 8, 476 (2012). arXiv:1111.3328.
  25. 25.
    Colbeck, R., Renner, R.: Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012). arXiv:1111.6597 ADSCrossRefGoogle Scholar
  26. 26.
    Hardy, L.: Are quantum states real? Int. J. Mod. Phys. B 27, 1345012 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Patra, M.K., Pironio, S., Massar, S.: No-go theorems for \(\psi \)-epistemic models based on a continuity assumption. Phys. Rev. Lett. 111, 090402 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Griffiths, R.B.: Epistemic restrictions in Hilbert space quantum mechanics. Phys. Rev. A 88, 042122 (2013). arXiv:1308.4176 ADSCrossRefGoogle Scholar
  29. 29.
    Omnès, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton, NJ (1999)zbMATHGoogle Scholar
  30. 30.
    Omnès, R.: Are there unsolved problems in the interpretation of quantum mechanics? In Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, pp. 169–194. Springer, Berlin, (1999).Google Scholar
  31. 31.
    Gell-Mann, M., Hartle, J.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Gell-Mann, M., Hartle, J.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007). quant-ph/0609190 ADSCrossRefGoogle Scholar
  33. 33.
    Hartle, J.B.: The quasiclassical realms of this quantum universe. Found. Phys. 41, 982–1006 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Griffiths, R.B.: Consistent quantum realism: a reply to Bassi and Ghirardi. J. Stat. Phys. 99, 1409–1425 (2000)CrossRefzbMATHGoogle Scholar
  35. 35.
    Griffiths, R.B.: Hilbert space quantum mechanics is noncontextual. Stud. Hist. Phil. Mod. Phys. 44, 174–181 (2013). arXiv:1201.1510 CrossRefzbMATHGoogle Scholar
  36. 36.
    Griffiths, R.B.: EPR, Bell, and quantum locality. Am. J. Phys. 79, 954–965 (2011). arXiv:1007.4281 ADSCrossRefGoogle Scholar
  37. 37.
    Griffiths, R.B.: Quantum locality. Found. Phys. 41, 705–733 (2011). arXiv:0908.2914 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Dowker, F., Kent, A.: On the consistent histories approach to quantum mechanics. J. Stat. Phys. 82, 1575–1646 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Kent, A.: Consistent sets yield contrary inferences in quantum theory. Phys. Rev. Lett. 78, 2874–2877 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Bassi, A., Ghirardi, G.C.: Decoherent histories and realism. J. Stat. Phys. 98, 457–494 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Griffiths, R.B., Hartle, J.B.: Comment on “Consistent sets yield contrary inferences in quantum theory”. Phys. Rev. Lett. 81, 1981 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Griffiths, R.B.: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002). arXiv:quant-ph/0207015 ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315–2318 (1991)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations