Foundations of Physics

, Volume 44, Issue 8, pp 843–855 | Cite as

Fabrication of Quantum Photonic Integrated Circuits by Means of Femtosecond Laser Pulses

  • Andrea Crespi
  • Roberto Osellame
  • Linda Sansoni
  • Paolo Mataloni
  • Fabio Sciarrino
  • Roberta Ramponi
Article

Abstract

Femtosecond laser microfabrication has emerged in the last decade as a powerful technique for direct inscription of low loss optical waveguides in practically any transparent dielectric substrate, showing outstanding versatility. Prototyping of new devices is made rapid, cheap and easy: optical circuits are written directly buried in the substrate, using the laser beam as an optical pen, without any need of costly masks as required by conventional photolithography. Many proof-of-principle demonstrations of integrated optics can be obtained, including splitters, directional couplers, and Mach–Zehnder interferometers. Actually, the road towards applications has just been opened, and the unique capabilities of femtosecond laser micromachining will enable achievements inconceivable with other technologies. In this work, the femtosecond laser fabrication technique is discussed, together with its application to the realization of integrated photonic quantum circuits.

Keywords

Integrated photonic quantum circuits  Femtosecond laser micromachining Polarization-encoded qubits 

References

  1. 1.
    Politi, A., Cryan, M.J., Rarity, J.G., Yu, S.Y., OBrien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Nolte, S., Will, M., Burghoff, J., Tünnermann, A.: Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109–111 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Owens, J.O., Broome, M.A., Biggerstaff, D.N., Goggin, M.E., Fedrizzi, A., Linjordet, T., Ams, M., Marshall, G.D., Twamley, J., Withford, M.J., White, A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Owens, J.O., Broome, M.A., Biggerstaff, D.N., Goggin, M.E., Fedrizzi, A., Linjordet, T., Ams, M., Marshall, G.D., Twamley, J., Withford, M.J., White, A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Della Valle, G., Osellame, R., Laporta, P.: Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A 11, 013001 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nat. Photon 2, 219 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., Perry, M.D.: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Ponader, C.W., Schroeder, J.F., Streltsov, A.M.: Origin of the refractive-index increase in laser-written waveguides in glasses. J. Appl. Phys. 103, 063516 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Ams, M., Marshall, G.D., Dekker, P., Dubov, M., Mezentsev, V.K., Bennion, I., Withford, M.J.: Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics. IEEE J. Sel. Top. Quantum Electron. 14, 1370 (2008)CrossRefGoogle Scholar
  11. 11.
    Bricchi, E., Klappauf, B.G., Kazansky, P.G.: Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Cheng, G., Mishchik, K., Mauclair, C., Audouard, E., Stoian, R.: Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass. Appl. Phys. Lett. 80, 219 (2009)Google Scholar
  13. 13.
    Marcinkeviius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J.: Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Eaton, S., Zhang, H., Herman, P., Yoshino, F., Shah, L., Bovatsek, J., Arai, A.: Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Schaffer, C.B., Brodeur, A., Garca, J.F., Mazur, E.: Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Eaton, S.M., Zhang, H., Ng, M.L., Li, J., Chen, W.-J., Ho, S., Herman, P.R.: Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 16, 9443 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Cerullo, G., Osellame, R., Taccheo, S., Marangoni, M., Polli, D., Ramponi, R., Laporta, P., De Silvestri, S.: Femtosecond micromachining of symmetric waveguides at 1.5 m by astigmatic beam focusing. Opt. Lett. 27, 1938 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Killi, A., Steinmann, A., Dorring, J., Morgner, U., Lederer, M.J., Kopf, D., Fallnich, C.: High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. Opt. Lett. 30, 1891 (2005)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
    Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    Yariv, A.: Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Crespi, A., Ramponi, R., Osellame, R., Sansoni, L., Bongioanni, I., Sciarrino, F., Vallone, G., Mataloni, P.: Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrea Crespi
    • 1
  • Roberto Osellame
    • 1
  • Linda Sansoni
    • 2
  • Paolo Mataloni
    • 2
  • Fabio Sciarrino
    • 2
  • Roberta Ramponi
    • 1
  1. 1.Dipartimento di FisicaPolitecnico di Milano and CNR - IFNMilanoItaly
  2. 2.Department of PhysicsUniversity of Rome “La Sapienza” and CNR - INORomaItaly

Personalised recommendations