Foundations of Physics

, Volume 44, Issue 5, pp 576–587 | Cite as

Quantum Control in Foundational Experiments

  • Lucas C. Céleri
  • Rafael M. Gomes
  • Radu Ionicioiu
  • Thomas Jennewein
  • Robert B. Mann
  • Daniel R. TernoEmail author


We describe a new class of experiments designed to probe the foundations of quantum mechanics. Using quantum controlling devices, we show how to attain a freedom in temporal ordering of the control and detection of various phenomena. We consider wave–particle duality in the context of quantum-controlled and the entanglement-assisted delayed-choice experiments. Then we discuss a quantum-controlled CHSH experiment and measurement of photon’s transversal position and momentum in a single set-up.


Quantum control Wave–particle duality Complementarity Entanglement 



R.G. and L.C. thank CAPES, CNPQ and INCT-IQ for partial financial support. T.J and R.B.M were supported in part by the Natural Sciences and Engineering Research Council of Canada. D.R.T. thanks the Center for Quantum Technologies at the National University of Singapore for hospitality, Berge Englert, Valerio Scarani and Vlatko Vedral for useful discussions and Alla Terno for the help with visualizations. We are grateful to Chuan-Feng Li and Jian-Shun Tang for kindly sharing their data with us.


  1. 1.
    Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1984)Google Scholar
  2. 2.
    Schlipp, P.A. (ed.): Albert Einstein, Philosopher-Scientist: The Library of Living Philosophers. MJF Books, New York ([1949] 1970)Google Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Bruß, D., Leuchs, G.: Lectures on Quantum Information. Wiley-VCH, Weinheim (2007)zbMATHGoogle Scholar
  5. 5.
    Greenberger, D., Hentschel, K., Weinert, F. (eds.): Compendium of Quantum Physics. Springer, Berlin (2009)Google Scholar
  6. 6.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    Longhi, S.: Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009)CrossRefGoogle Scholar
  9. 9.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  10. 10.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics, chap. VI. Princeton University Press, Princeton (1955). (transl. by Beyer, E.T.)Google Scholar
  11. 11.
    Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften. 23, 807–808; (transl. in Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement); 152–167 (1935)Google Scholar
  12. 12.
    Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hornberger, K., et al.: Quantum interference of clusters and molecules. Rev. Mod. Phys. 84, 157–173 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Ionicioiu, R., Terno, D.R.: Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett 107, 230–406 (2011)CrossRefGoogle Scholar
  16. 16.
    Jacques, V., et al.: Experimental realization of wheelers delayed-choice Gedanken experiment. Science 315, 966–968 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Scully, M.O., Englert, B.G., Walter, H.: Quantum optical tests of complementarity. Nature 351, 111–116 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics. Jones and Bartlett, Boston (1997)Google Scholar
  19. 19.
    Bohr, N.: Discussions with Einstein on epistemic problems of atomic physics. In: Schlipp, P.A. (ed.) Albert Einstein, Philosopher-Scientist: The Library of Living Philosophers, pp. 200–241. MJF Books, New York (2007)Google Scholar
  20. 20.
    Stapp, H.: Complementarity principle. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics, pp. 111–113. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    Wheeler, J.A.: The “past” and the “delayed-choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Mechanics, pp. 9–48. Academic Press, New York (1978)Google Scholar
  22. 22.
    Leggett, A.J.: Delayed-choice experiments. In: Bruß, D., Leuchs, G. (eds.) Lectures on Quantum Information, pp. 161–166. Wiley-VCH, Weinheim (2007)Google Scholar
  23. 23.
    von Weizsäcker, C.F.F.: Zur Deutung der Quantenmechanik. Z. Phys. 118, 489–509 (1941)CrossRefGoogle Scholar
  24. 24.
    Auccaise, R., et al.: Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Tang, J.-S., et al.: Realization of quantum wheelers delayed-choice experiment. Nat. Photonics 6, 600–604 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Kaiser, F., et al.: Entanglement-enabled delayed-choice experiment. Science 338, 637–640 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Ionicioiu, R., Jennewein, T., Mann, R. B., Terno, D. R.: Does Determinism Conflict with Wave–Particle Realism? Proposal for an Experimental, Test. arXiv:1211.0979
  28. 28.
    Clauser, F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Brandenburger, A., Yanofsky, N.: A classification of hidden-variable properties. J. Phys. A 41, 425–302 (2008)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Born, M., Wolf, E.: Principles of Optics. Oxford University Press, Oxford (1999)CrossRefGoogle Scholar
  32. 32.
    Lindner, N.H., Terno, D.R.: The effect of focusing on polarization qubits. J. Mod. Opt. 52, 1177–1188 (2005)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Walborn, S.P., Monken, C.H., Pádua, S., Souto Ribeiro, P.H.: Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Tasca, D.S., et al.: Continuous variable quantum computation with spatial degrees of freedom of photons. Phys. Rev. A 83, 052325 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Ananthaswamy, A.: Quantum shadows. New Sci. 217(2898), 36–39 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lucas C. Céleri
    • 1
  • Rafael M. Gomes
    • 1
  • Radu Ionicioiu
    • 2
  • Thomas Jennewein
    • 3
  • Robert B. Mann
    • 3
    • 4
  • Daniel R. Terno
    • 5
    Email author
  1. 1.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Department of Theoretical PhysicsNational Institute of Physics and Nuclear EngineeringBucharest–MăgureleRomania
  3. 3.Department of Physics and Astronomy, Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  4. 4.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  5. 5.Department of Physics and AstronomyMacquarie UniversitySydneyAustralia

Personalised recommendations