Foundations of Physics

, Volume 44, Issue 4, pp 426–446 | Cite as

Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?

Article

Abstract

The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example of the case in which the subsystems interact with each other; we show that decoherence does not solve the measurement problem precisely because the reduced state of the measuring apparatus is not its quantum state. Second, the non-interacting case is illustrated in the context of no-collapse interpretations, in which we show that certain well-known experimental results cannot be accounted for due to the fact that the reduced states of the measured system and the measuring apparatus are conceived as their quantum states. Finally, we prove that reduced states are a kind of coarse-grained states, and for this reason they cancel the correlations of the subsystem with other subsystems with which it interacts or is entangled.

Keywords

Quantum state Reduced state Partial trace Decoherence  No-collapse interpretations 

References

  1. 1.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)MATHGoogle Scholar
  2. 2.
    Adler, S.: Why decoherence has not solved the measurement problem: a response to P. W. Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003)CrossRefGoogle Scholar
  3. 3.
    Anastopoulos, C.: Frequently asked questions about decoherence. Int. J. Theor. Phys. 41, 1573–1590 (2002)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Anderson, P.W.: Science: a ‘dappled world’ or a ‘seamless web’? Stud. Hist. Philos. Mod. Phys. 34, 487–494 (2001)CrossRefGoogle Scholar
  5. 5.
    Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)ADSMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ardenghi, J.S., Lombardi, O.: The modal-Hamiltonian interpretation of quantum mechanics as a kind of “atomic” interpretation. Phys. Res. Int. 2011, 379604 (2011)CrossRefGoogle Scholar
  7. 7.
    Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: Perspectives and Foundational Problems in Philosophy of Science, pp. 207–217. Springer, Dordrecht (2012)Google Scholar
  8. 8.
    Auletta, G.: Foundations and Interpretation of Quantum Mechanics. World Scientific, Singapore (2000)MATHCrossRefGoogle Scholar
  9. 9.
    Bacciagaluppi, G.: The role of decoherence in quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition). http://plato.stanford.edu/archives/fall2008/entries/qm-decoherence (2008). Accessed 2013
  10. 10.
    Ballentine, L.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)MATHCrossRefGoogle Scholar
  11. 11.
    Berkovitz, J., Frigg, R., Kronz, F.: The ergodic hierarchy, randomness and Hamiltonian chaos. Stud. Hist. Philos. Mod. Phys. 37, 661–691 (2006)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bricmont, J.: Science of chaos or chaos in science? Phys. Mag. 17, 159–208 (1995)Google Scholar
  13. 13.
    Bub, J.: Quantum mechanics without the projection postulate. Found. Phys. 22, 737–754 (1992)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  15. 15.
    Bub, J., Clifton, R.: A uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 27, 181–219 (1996)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Callender, C.: Reducing thermodynamics to statistical mechanics: the case of entropy. J. Philos. 96, 348–373 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cartwright, N.: How the Laws of Physics Lie. Clarendon Press, Oxford (1983)CrossRefGoogle Scholar
  18. 18.
    Castagnino, M., Fortin, S.: Formal features of a general theoretical framework for decoherence in open and closed systems. Int. J. Theor. Phys. 52, 1379–1398 (2013)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Castagnino, M., Fortin, S., Lombardi, O.: Suppression of decoherence in a generalization of the spin-bath model. J. Phys. A 43, 065304 (2010)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Castagnino, M., Fortin, S., Lombardi, O.: The effect of random coupling coefficients on decoherence. Mod. Phys. Lett. A 25, 611–617 (2010)ADSMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Castagnino, M., Laura, R., Lombardi, O.: A general conceptual framework for decoherence in closed and open systems. Philos. Sci. 74, 968–980 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cohen-Tannoudji, C., Diu, B., Lalöe, F.: Quantum Mechanics. Wiley, New York (1977)Google Scholar
  23. 23.
    d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, Reading (1976)Google Scholar
  24. 24.
    d’Espagnat, B.: Veiled Reality. An Analysis of Present-Day Quantum Mechanical Concepts. Addison-Wesley, Reading (1995)Google Scholar
  25. 25.
    Dieks, D.: The formalism of quantum theory: an objective description of reality? Annalen der Physik 7, 174–190 (1988)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Dieks, D.: Quantum mechanics without the projection postulate and its realistic interpretation. Found. Phys. 38, 1397–1423 (1989)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Dieks, D.: Preferred factorizations and consistent property attribution. In: Healey, R., Hellman, G. (eds.) Quantum Measurement: Beyond Paradox, pp. 144–160. University of Minnesota Press, Minneapolis (1998)Google Scholar
  28. 28.
    Dieks, D.: Objectification, measurement and classical limit according to the modal interpretation of quantum mechanics. In: Busch, P., Lahti, P., Mittelstaedt, P. (eds.) Proceedings of the Symposium on the Foundations of Modern Physics, pp. 160–167. World Scientific, Singapore (1994)Google Scholar
  29. 29.
    Dieks, D.: Modal interpretation of quantum mechanics, measurements, and macroscopic behaviour. Phys. Rev. A 49, 2290–2300 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Dieks, D.: Probability in modal interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 19, 292–310 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dieks, D., Vermaas, P.E.: The Modal Interpretation of Quantum Mechanics. Kluwer Academic Publishers, Dordrecht (1998)MATHCrossRefGoogle Scholar
  32. 32.
    Driebe, D.J.: Letters (answer to Lebowitz, 1993). Phys. Today 47, 14–15 (1994)Google Scholar
  33. 33.
    Earman, J., Rédei, M.: Why ergodic theory does not explain the success of equilibrium statistical mechanics. Br. J. Philos. Sci. 47, 63–78 (1996)MATHCrossRefGoogle Scholar
  34. 34.
    Frigg, R.: A field guide to recent work on the foundations of thermodynamics and statistical mechanics. In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics, pp. 99–196. Ashgate, London (2007)Google Scholar
  35. 35.
    Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Harshman, N.L., Wickramasekara, S.: Galilean and dynamical invariance of entanglement in particle scattering. Phys. Rev. Lett. 98, 080406 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Harshman, N.L., Wickramasekara, S.: Tensor product structures, entanglement, and particle scattering. Open Syst. Inf. Dyn. 14, 341–351 (2007)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Healey, R.: Dissipating the quantum measurement problem. Topoi 14, 55–65 (1995)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Healey, R.: Physical composition. Stud. Hist. Philos. Mod. Phys. 44, 48–62 (2013)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Cambridge (1989)Google Scholar
  41. 41.
    Joos, E.: Elements of environmental decoherence. In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol. 538, pp. 1–17. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  42. 42.
    Kochen, S.: A new interpretation of quantum mechanics. In: Mittelstaedt, P., Lahti, P. (eds.) Symposium on the Foundations of Modern Physics 1985, pp. 151–169. World Scientific, Singapore (1985)Google Scholar
  43. 43.
    Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. 18, 315–318 (1931)ADSCrossRefGoogle Scholar
  44. 44.
    Laura, R., Vanni, L.: Conditional probabilities and collapse in quantum measurements. Int. J. Theor. Phys. 47, 2382–2392 (2008)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Phys. Today 46, 32–38 (1993)CrossRefGoogle Scholar
  46. 46.
    Lebowitz, J.L.: Lebowitz replies. Phys. Today 47, 115–116 (1994)MathSciNetGoogle Scholar
  47. 47.
    Lebowitz, J.L.: Statistical mechanics: a selective review of two central issues. Rev. Mod. Phys. 71, S346–S357 (1994)CrossRefGoogle Scholar
  48. 48.
    Leggett, A.J.: Reflections on the quantum measurement paradox. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications, pp. 85–104. Routledge and Kegan Paul, London (1987)Google Scholar
  49. 49.
    Lombardi, O.: El problema de la ergodicidad en mecánica estadística, Crítica. Revista Hispanoamericana de Filosofía 35, 3–41 (2003)Google Scholar
  50. 50.
    Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Lombardi, O., Castagnino, M., Ardenghi, J.S.: The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition). http://plato.stanford.edu/archives/win2012/entries/qm-modal/ (2012). Accessed 2013
  53. 53.
    Lombardi, O., Fortin, S., Castagnino, M.: The problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H., Okasha, S., Hartmann, S. (eds.) EPSA Philosophy of Science: Amsterdam 2009, pp. 161–174. Springer, Dordrecht (2012).Google Scholar
  54. 54.
    Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61, 981–1015 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    Masillo, F., Scolarici, G., Sozzo, S.: Proper versus improper mixtures: towards a quaternionic quantum mechanics. Theor. Math. Phys. 160, 1006–1013 (2009)MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Messiah, A.: Quantum Mechanics, vol. 1. North-Holland, Amsterdam (1961)Google Scholar
  57. 57.
    Misra, B., Prigogine, I., Courbage, M.: From deterministic dynamics to probabilistic descriptions. Physica A 98, 1–26 (1979)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Nicolis, G., Prigogine, I.: Exploring Complexity. An Introduction. Freeman & Company, New York (1989)Google Scholar
  59. 59.
    Ney, A., Albert, D.: The Wave Function. Oxford University Press, New York (2013)MATHCrossRefGoogle Scholar
  60. 60.
    Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  61. 61.
    Omnès, R.:. Decoherence: an irreversible process. Los Alamos National Laboratory. arXiv:quant-ph/0106006 (2001)
  62. 62.
    Omnès, R.: Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities. Phys. Rev. A 65, 052119 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik (English translation: General Principles of Quantum Mechanics). In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, pp. 83–272. Springer, Berlin (1933)Google Scholar
  64. 64.
    Paz, J. P., Zurek, W. H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Fundamentals of Quantum Information, Lecture Notes in Physics, vol. 587. pp. 77–148. Springer, Heidelberg. arXiv:quant-ph/0010011 (2002)
  65. 65.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Heidelberg (2007). (4th reprint 2009)Google Scholar
  66. 66.
    Uffink, J.: Compendium of the foundations of classical statistical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics, pp. 923–1074. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  67. 67.
    Vermaas, P., Dieks, D.: The modal interpretation of quantum mechanics and its generalization to density operators. Found. Phys. 25, 145–158 (1995)ADSMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    Zeh, D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)ADSCrossRefGoogle Scholar
  69. 69.
    Zeh, D.: Toward a quantum theory of observation. Found. Phys. 3, 109–116 (1973)ADSCrossRefGoogle Scholar
  70. 70.
    Zeh, H.D.: Roots and fruits of decoherence. Séminaire Poincaré 2, 1–19 (2005)MathSciNetGoogle Scholar
  71. 71.
    Zurek, W.H.: Pointer basis of quantum apparatus: into what mixtures does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)CrossRefGoogle Scholar
  74. 74.
    Zurek, W.H.: Preferred states, predictability, classicality and the environment-induced decoherence. Prog. Theor. Phys. 89, 281–312 (1993)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    Zurek, W.H.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry, pp. 175–207. Cambridge University Press, Cambridge (1994)Google Scholar
  76. 76.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)ADSMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y Naturales, CONICETUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations