Foundations of Physics

, Volume 44, Issue 5, pp 463–471 | Cite as

Superstrings and the Foundations of Quantum Mechanics

  • Gerard ’t HooftEmail author


It is put forward that modern elementary particle physics cannot be completely unified with the laws of gravity and general relativity without addressing the question of the ontological interpretation of quantum mechanics itself. The position of superstring theory in this general question is emphasized: superstrings may well form exactly the right mathematical system that can explain how quantum mechanics can be linked to a deterministic picture of our world. Deterministic interpretations of quantum mechanics are usually categorically rejected, because of Bell’s powerful observations, and indeed these apply here also, but we do emphasize that the models we arrive at are super-deterministic, which is exactly the case where Bell expressed his doubts. Strong correlations at space-like separations could explain the apparent contradictions.


Black Hole Quantum Mechanic Cellular Automaton Cellular Automaton Model Dirac Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aitchison, I., Hey, A.: Gauge Theories in Particle Physics: A Practical Introduction. Institute of Physics, Bristol (2003). ISBN 978-0-585-44550-2Google Scholar
  2. 2.
    Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford. (2006). ISBN 0-19-851961-3Google Scholar
  3. 3.
    The Atlas Collaboration: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1 (2012). arXiv:1207.7214
  4. 4.
    The CMS Collaboration: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30 (2012). arXiv:1207.7235[hep-ex]
  5. 5.
    ’t Hooft G.: The scattering matrix approach for the quantum black hole: an overview. J. Mod. Phys. A11, 4623 (1996). gr-qc/9607022
  6. 6.
    ’t Hooft, G.: “Discreteness and Determinism in Superstrings”, ITP-UU-12/25; SPIN-12/23 (2012). arXiv:1207.3612v2[hep-th]
  7. 7.
    von Neumann, J.: The general and logical theory of automata. In: Jeffress, L.A. (ed.) Cerebral Mechanisms in Behavior. The Hixon Symposium. Wiley, New York (1951)Google Scholar
  8. 8.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002). ISBN 1-57955-008-8Google Scholar
  10. 10.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York (1966)Google Scholar
  12. 12.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bell, J.S.: On the Einstein, Podolsky, Rosen paradox. Physica 1, 195 (1964)Google Scholar
  14. 14.
    Conway, J., Kochen, S.: The strong free will theorem. AMS 56, 226 (2009). arXiv:0807.3286[quant-ph].
  15. 15.
    ’t Hooft, G.: Duality between a deterministic cellular automaton and a bosonic quantum field theory in 1+1 dimensions. Found. Phys. 43, 597–614 (2013). arXiv:1205.4107
  16. 16.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987). ISBN-10: 0521357527; ISBN-13: 978-0521357524Google Scholar
  17. 17.
    Polchinski, J.: String Theory: An Introduction to the Bosonic String, vol. I. Cambridge University Press, Cambridge (1998). ISBN 0-521-63303-6Google Scholar
  18. 18.
    Polchinski, J.: String Theory: Superstring Theory and Beyond, vol. II. Cambridge University Press, Cambridge (1998). ISBN 0-521-63304-4Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUtrecht University and Spinoza InstituteUtrechtThe Netherlands

Personalised recommendations