Foundations of Physics

, Volume 44, Issue 3, pp 305–348 | Cite as

Symmetry and Evolution in Quantum Gravity

Article

Abstract

We propose an operator constraint equation for the wavefunction of the Universe that admits genuine evolution. While the corresponding classical theory is equivalent to the canonical decomposition of General Relativity, the quantum theory contains an evolution equation distinct from standard Wheeler–DeWitt cosmology. Furthermore, the local symmetry principle—and corresponding observables—of the theory have a direct interpretation in terms of a conventional gauge theory, where the gauge symmetry group is that of spatial conformal diffeomorphisms (that preserve the spatial volume of the Universe). The global evolution is in terms of an arbitrary parameter that serves only as an unobservable label for successive states of the Universe. Our proposal follows unambiguously from a suggestion of York whereby the independently specifiable initial data in the action principle of General Relativity is given by a conformal geometry and the spatial average of the York time on the spacelike hypersurfaces that bound the variation. Remarkably, such a variational principle uniquely selects the form of the constraints of the theory so that we can establish a precise notion of both symmetry and evolution in quantum gravity.

Keywords

Gauge symmetry Quantum gravity Problem of time Canonical quantization Variational principles quantum cosmology 

References

  1. 1.
    Bergman, P.G.: Letter to P. A. M. Dirac, (Oct 9th 1959)Google Scholar
  2. 2.
    DeWitt, B.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Isham, C.: Canonical quantum gravity and the problem of time. Arxiv preprint gr-qc (1992). http://arxiv.org/abs/grqc/9210011
  4. 4.
    Anderson, E.: The problem of time in quantum gravity. Ann. Phys. 524, 757–786 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dirac, P.A.M.: The theory of gravitation in hamiltonian form. Proc. R Soc. Lond. Ser. A Math. Phys. Sci. 246, 333–343 (1958)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Arnowitt, R., Deser, S., Misner, C.W.: Canonical variables for general relativity. Phys. Rev. 117, 1595–1602 (1960)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Moncrief, V.: How solvable is (2 + 1)-dimensional Einstein gravity? J. Math. Phys. 31, 2978 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kiefer, C., Zeh, H.: Arrow of time in a recollapsing quantum universe. Phys. Rev. D 51(8), 4145 (1995)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Kiefer, C.: Can the arrow of time be understood from quantum cosmology? In: The Arrows of Time, pp. 191–203. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Space-time as a causal set. Phys. Rev. Lett. 59(5), 521–524 (1987)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dowker, F.: Causal sets and the deep structure of spacetime. In: Ashtekar, A. (ed.) 100 Years of Relativity, Space-Time Structure: Einstein and Beyond, pp. 445–464. World Press Scientific, Singapore (2005)CrossRefGoogle Scholar
  13. 13.
    Henson, J.: The causal set approach to quantum gravity. arXiv, preprint gr-qc/0601121 (2006)
  14. 14.
    Isham, C., Butterfield, J.: Some possible roles for topos theory in quantum theory and quantum gravity. Found. Phys. 30(10), 1707–1735 (2000)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Isham, C.: Some reflections on the status of conventional quantum theory when applied to quantum gravity. In: The Future of the Theoretical Physics and Cosmology (Cambridge, 2002): Celebrating Stephen Hawking’s 60th Birthday, pp. 384–408 (2002)Google Scholar
  16. 16.
    Hardy, L.: Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. J. Phys. A Math. Theor. 40(12), 3081 (2007)ADSCrossRefMATHGoogle Scholar
  17. 17.
    Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42, 2638–2646 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 442 (1991)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Rovelli, C.: Partial observables. Phys. Rev. D 65, 124013 (2002)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quant. Gravity 23, 6155 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Dittrich, B.: Partial and complete observables for hamiltonian constrained systems. General Relat. Gravit. 39, 1891 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: I. General framework. Class. Quant. Gravity 23, 1025–1065 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Thiemann, T.: The phoenix project: master constraint programme for loop quantum gravity. Class. Quant. Gravity 23, 2211 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  25. 25.
    Husain, V., Pawlowski, T.: Time and a physical Hamiltonian for quantum gravity. Phys. Rev. Lett. 108, 141301 (2012). arXiv:1108.1145[gr-qc] Google Scholar
  26. 26.
    Giesel, K., Thiemann, T.: Scalar material reference systems and loop quantum gravity. arXiv:1206.3807[gr-qc]
  27. 27.
    Brown, J.D., Kuchar, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51 (1995) 5600–5629. arXiv:gr-qc/9409001[gr-qc]
  28. 28.
    Isham, C., Kuchar, K.: Representations of space-time diffeomorphisms 2. Canonical geometrodynamcis. Ann. Phys. 164, 316 (1985)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Loll, R.: Discrete lorentzian quantum gravity. Nucl. Phys. B Proc. Suppl. 94(1), 96–107 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Ambjørn, J., Jurkiewicz, J., Loll, R.: Dynamically triangulating lorentzian quantum gravity. Nucl. Phys. B 610(1), 347–382 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    York, J.: Boundary terms in the action principles of general relativity. Found. Phys. 16(3), 249–257 (1986)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Gryb, S., Thébault, K.: The role of time in relational quantum theories. Found. Phys. 42, 1210–1238 (2012)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Anderson, E., Barbour, J., Foster, B.Z., Kelleher, B., O’Murchadha, N.: The physical gravitational degrees of freedom. Class. Quant. Gravity 22, 1795–1802 (2005). arXiv:gr-qc/0407104 Google Scholar
  34. 34.
    Gomes, H., Gryb, S., Koslowski, T.: Einstein gravity as a 3D conformally invariant theory. Class. Quant. Gravity 28, 045005 (2011). arXiv:1010.2481[gr-qc]
  35. 35.
    Brown, J.D., York, J.W.J.: Jacobi’s action and the recovery of time in general relativity. Phys. Rev. D 40, 3312–3318 (1989)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    Henneaux, M., Teitelboim, C.: The cosmological constant and general covariance. Phys. Lett. B 222, 195–199 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    Unruh, W.G.: A unimodular theory of canonical quantum gravity. Phys. Rev. D 40, 1048 (1989)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Unruh, W.G., Wald, R.M.: Time and the interpretation of canonical quantum gravity. Phys. Rev. D40, 2598 (1989)ADSMathSciNetGoogle Scholar
  39. 39.
    Smolin, L.: The quantization of unimodular gravity and the cosmological constant problem. arXiv:0904.4841[hep-th]
  40. 40.
    Kuchar, K.V.: Does an unspecified cosmological constant solve the problem of time in quantum gravity? Phys. Rev. D 43, 3332–3344 (1991)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    Barbour, J.B.: The Timelessness of quantum gravity. 1: The evidence from the classical theory. Class. Quant. Gravity 11, 2853–2873 (1994)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    Barbour, J., Foster, B.Z.: Constraints and gauge transformations: Dirac’s theorem is not always valid. (Aug., 2008). arXiv:0808.1223[gr-qc]
  43. 43.
    Pons, J., Salisbury, D., Sundermeyer, K.A.: Observables in classical canonical gravity: folklore demystified. J. Phys. A Math. General 222, 12018 (2010)Google Scholar
  44. 44.
    Pitts, J.B.: Change in hamiltonian general relativity from the lack of a time-like killing vector field. (Oct., 2013). http://philsci-archive.pitt.edu/10094/
  45. 45.
    Kuchař, K.: The Problem of Time in Quantum Geometrodynamics, pp. 169–195. Oxford University Press, New York (1999)Google Scholar
  46. 46.
    Kuchar̆, K.: The problem of time in canonical quantization of relativistic systems. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, p. 141. Birkhauser, Boston (1991)Google Scholar
  47. 47.
    Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter G., Vincent D., Williams J. (eds.) Proceedings of the Fourth Canadian Conference on General Relativity and Relativistic Astrophysics, held 16–18 May, 1991 at University of Winnipeg, pp. 211–314. World Scientific, Singapore (1992)Google Scholar
  48. 48.
    Fatibene, L., Francaviglia, M., Mercadante, S.: Noether symmetries and covariant conservation laws in classical, relativistic and quantum physics. arXiv:1001.2886[gr-qc]
  49. 49.
    Gomes, H., Koslowski, T.: The link between general relativity and shape dynamics. Class. Quant. Gravity 29, 075009 (2012). arXiv:1101.5974[gr-qc]
  50. 50.
    Poincaré, H.: Science et Hypothèse. Ernest Flammarion, Paris (1902)MATHGoogle Scholar
  51. 51.
    Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. A 382(1783), 295–306 (1982)ADSCrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Barbour, J.: Dynamics of pure shape, relativity and the problem of time. In: Decoherence and Entropy in Complex Systems (Proceedings of the Conference DICE, Piombino 2002, Elze H.-T. (ed.)). Springer Lecture Notes in Physics. Springer, New York (2003)Google Scholar
  53. 53.
    Gryb, S.B.: A definition of background Independence. Class. Quant. Gravity. 27, 215018 (2010). arXiv:1003.1973[gr-qc]
  54. 54.
    Dirac, P.A.M.: Lectures on Quantum Mechanics. Dover Publications, Yeshivea University, New York (1964)Google Scholar
  55. 55.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. University Press, Princeton (1992)MATHGoogle Scholar
  56. 56.
    Vytheeswaran, A.: Gauge unfixing in second class constrained systems. Ann. Phys. 236, 297–324 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    York, J.J.W.: Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26, 1656–1658 (1971)ADSCrossRefMathSciNetGoogle Scholar
  58. 58.
    York, J.J.W.: Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity. J. Math. Phys. 14, 456–464 (1973)ADSCrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    York, J.J.W.: Role of conformal three geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)ADSCrossRefGoogle Scholar
  60. 60.
    Cook, G.B.: Initial data for numerical relativity. Living Rev. Relativ. 3(5), (2000). http://www.livingreviews.org/lrr-2000-5
  61. 61.
    Mukhanov, V.F., Feldman, H., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 215, 203–333 (1992)ADSCrossRefMathSciNetGoogle Scholar
  62. 62.
    Barbour, J.: Shape dynamics. An introduction. arXiv:1105.0183
  63. 63.
    Barbour, J.: Scale-invariant gravity: particle dynamics. Class. Quant. Gravity 20, 1543–1570 (2003). arXiv:gr-qc/0211021
  64. 64.
    Isham, C., Kakas, A.: A group theoretical approach to the canonical quantisation of gravity. I. Construction of the canonical group. Class. Quant. Gravity 1(6), 621 (1984)ADSCrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    Isham, C., Kakas, A.: A group theoretical approach to the canonical quantisation of gravity. II. Unitary representations of the canonical group. Class. Quant. Gravity 1(6), 633 (1984)ADSCrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Giulini, D., Marolf, D.: On the generality of refined algebraic quantization. Class. Quant. Gravity 16, 2479–2488 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    Giulini, D., Marolf, D.: A uniqueness theorem for constraint quantization. Class. Quant. Gravity 16, 2489–2505 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Kuchař, K.: General relativity: dynamics without symmetry. J. Math. Phys. 22, 2640 (1981)ADSCrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Kuchar, K.V.: Canonical quantum gravity. arXiv:gr-qc/9304012[gr-qc]
  70. 70.
    Torre, C.: Gravitational observables and local symmetries. Phys. Rev. D Part. Fields 48(6), R2373 (1993)ADSCrossRefMathSciNetGoogle Scholar
  71. 71.
    Hájícek, P.: Choice of gauge in quantum gravity. Nucl. Phys. B Proc. Suppl. 80, 1213 (2000)Google Scholar
  72. 72.
    Anderson, E.: Relational quadrilateralland. II. Analogues of isospin and hypercharge. arXiv:1202.4187[gr-qc]
  73. 73.
    Gomes, H.deA.: Gauge theory in Riem: classical. Accepted to J. Math. Phys. arXiv:0807.4405[gr-qc]
  74. 74.
    Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. In Witten, L. (ed.) Gravitation: An Introduction to Current Research, chap. 7, pp. 227–265. arXiv:gr-qc/0405109.
  75. 75.
    Teitelboim, C.: How commutators of constraints reflect the space-time structure. Ann. Phys. 79, 542–557 (1973)ADSCrossRefGoogle Scholar
  76. 76.
    Thiemann, T.: Modern canonical quantum general relativity. Cambridge University Press, Cambridge (2007). arXiv:gr-qc/0110034[gr-qc]
  77. 77.
    Isham, C.J.: Canonical quantum gravity and the problem of time. arXiv:gr-qc/9210011
  78. 78.
    Dirac, P.A.M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 114, 924–930 (1959)ADSCrossRefMATHMathSciNetGoogle Scholar
  79. 79.
    Gomes, H.: The coupling of shape dynamics to matter. J. Phys. Conf. Ser. 360, 012058 (2012). arXiv:1112.0374[gr-qc]
  80. 80.
    Gomes, H.: Breaking the uniqueness of the shape dynamics Hamiltonian. arXiv:1201.3969[gr-qc]
  81. 81.
    O’Murchadha, N., York, J.J.W.: Existence and uniqueness of solutions of the hamiltonian constraint of general relativity on compact manifolds. J. Math. Phys. 4, 1551–1557 (1973)CrossRefMathSciNetGoogle Scholar
  82. 82.
    Barbour, J., Koslowski, T., Mercati, F.: The solution to the problem of time in shape dynamics. arXiv:1302.6264[gr-qc]
  83. 83.
    Gomes, H., Koslowski, T.: Coupling shape dynamics to matter gives spacetime. General Relat. Gravity 44 (2012) 1539–1553. arXiv:1110.3837[gr-qc]
  84. 84.
    Barbour, J., Lostaglio, M., Mercati, F.: Scale anomaly as the origin of time. arXiv:1301.6173[gr-qc]
  85. 85.
    Strominger, A.: Inflation and the dS/CFT correspondence. JHEP 0111, 049 (2001). arXiv:hep-th/0110087[hep-th]
  86. 86.
    McFadden, P., Skenderis, K.: The holographic universe. J. Phys. Conf. Ser. 222, 012007 (2010). arXiv:1001.2007[hep-th] Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  2. 2.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Munich Center for Mathematical PhilosophyLudwig Maximilians Universität MunichMunichGermany

Personalised recommendations