Foundations of Physics

, Volume 44, Issue 5, pp 452–462 | Cite as

Can Quantum Gravity be Exposed in the Laboratory?

  • Jacob D. BekensteinEmail author


I propose an experiment that may be performed, with present low temperature and cryogenic technology, to reveal Wheeler’s quantum foam. It involves coupling an optical photon’s momentum to the center of mass motion of a macroscopic transparent block with parameters such that the latter is displaced in space by approximately a Planck length. I argue that such displacement is sensitive to quantum foam and will react back on the photon’s probability of transiting the block. This might allow determination of the precise scale at which quantum fluctuations of space–time become large, and so differentiate between the brane-world and the traditional scenarios of spacetime.


Quantum gravity Planck length Quantum foam 



I thank the participants of the “Horizons of Quantum Physics” workshop in Taipei, in particular Wei-Tou Ni, Lajos Djosi and Thomas Jennewein, for useful criticism, and Al Schwartz for advice. The present account was prepared with support from the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation (Grant No. 1937/12), as well as from the Israel Science Foundation personal Grant No. 24/12.


  1. 1.
    Bekenstein, J.D.: Is a tabletop search for Planck scale signals feasible? Phys. Rev. D 86, 124040 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Jacobson, T., Liberati, S., Mattingly, D.: Lorentz violation at high energy: concepts, phenomena, and astrophysical constraints. Ann. Phys. 321, 150 (2006)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Abdo, A., Ackermann, M., Ajello, M., et al.: A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Mureika, J., Nicolini, P., Spallucci, E.: Could any black holes be produced at the LHC? Phys. Rev. D 85, 106007 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dvali, G., Gabadadze, G., Porrati, M.: On sub-millimeter forces from extra dimensions. Mod. Phys. Lett. A 15, 1717 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Zwiebach, B.: First Course in String Theory, pp. 54–57. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ali, A.F., Das, S., Vagenas, E.C.: Proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M., Brukner, C.: Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393 (2012)CrossRefGoogle Scholar
  10. 10.
    Hogan, C.: Interferometers as probes of Planckian quantum geometry. Phys. Rev. D 85, 064007 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Faddeev, L.D.: New dynamical variables in Einstein’s theory of gravity. Theor. Math. Phys. 166, 279 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ambjorn, J., Jurkiewicz, J., Loll, R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962)zbMATHGoogle Scholar
  15. 15.
    Abraham, M.: Zur Elektrodynamik bewegter Körper. Rendiconti del Circolo Matematico di Palermo 28, 1 (1909)CrossRefzbMATHGoogle Scholar
  16. 16.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1984)Google Scholar
  17. 17.
    Frisch, O.R.: Take a photon. Contemp. Phys. 7, 45 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    Barnett, S.M.: Resolution of the Abraham–Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations