Optically Engineered Quantum States in Ultrafast and Ultracold Systems

Abstract

This short account summarizes our recent achievements in ultrafast coherent control of isolated molecules in the gas phase, and its ongoing applications to an ensemble of ultracold Rydberg atoms to explore quantum many-body dynamics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    The maximum clock rate of IBM Power 6 is 5.0 GHz, giving its clock period to be 200 ps.

References

  1. 1.

    Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989). doi:10.1119/1.16104

    Google Scholar 

  2. 2.

    Steeds, J., Merli, P.G., Pozzi, G., Missiroli, G.F., Tonomura, A.: The double-slit experiment with single electrons. Phys. World 16, 20–21 (2003).

    Google Scholar 

  3. 3.

    Kiffner, M., Li, W., Jaksch, D.: Three-body bound states in dipole-dipole interacting Rydberg atoms. Phys. Rev. Lett. 111, 233003 (2013). doi:10.1103/PhysRevLett.111.233003

    Google Scholar 

  4. 4.

    Kiffner, M., Li, W., Jaksch, D.: Magnetic monopoles and synthetic spin-orbit coupling in Rydberg Macrodimers. Phys. Rev. Lett. 110, 170402 (2013). doi:10.1103/PhysRevLett.110.170402

    Google Scholar 

  5. 5.

    Shapiro, M., Hepburn, J.W., Brumer, P.: Simplified laser control of unimolecular reactions: simultaneous (1, 3) excitation. Chem. Phys. Lett. 149, 451–454 (1988). doi:10.1016/0009-2614(88)80362-2

    ADS  Article  Google Scholar 

  6. 6.

    Tannor, D.J., Kosloff, R., Rice, S.A.: Coherent pulse sequence induced control of selectivity of reactions. J. Chem. Phys. 85, 5805–5820 (1986). doi:10.1063/1.451542

    ADS  Article  Google Scholar 

  7. 7.

    Scherer, N.F., Carlson, R.J., Matro, A., Du, M., Ruggiero, A.J., Romero-Rochin, V., Cina, J.A., Fleming, G.R., Rice, S.A.: Fluorescence-detected wave packet interferometry: time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses. J. Chem. Phys. 95, 1487–1511 (1991). doi:10.1063/1.461064

    Google Scholar 

  8. 8.

    Ohmori, K.: Wave-packet and coherent control dynamics. Annu. Rev. Phys. Chem. 60, 487–511 (2009). doi:10.1146/annurev.physchem.59.032607.093818

    ADS  Article  Google Scholar 

  9. 9.

    Katsuki, H., Chiba, H., Girard, B., Meier, C., Ohmori, K.: Visualizing picometric quantum ripples of ultrafast wave-packet interference. Science 311, 1589–1592 (2006). doi:10.1126/science.1121240

    ADS  Article  Google Scholar 

  10. 10.

    Katsuki, H., Chiba, H., Meier, C., Girard, B., Ohmori, K.: Actively tailored spatiotemporal images of quantum interference on the picometer and femtosecond scales. Phys. Rev. Lett. 102, 103602 (2009). doi:10.1103/PhysRevLett.102.103602

    Google Scholar 

  11. 11.

    Ohmori, K., Sato, Y., Nikitin, E.E., Rice, S.A.: High-precision wave-packet interferometry with HgAr dimers. Phys. Rev. Lett. 91, 243003 (2003). doi:10.1103/PhysRevLett.91.243003

    Google Scholar 

  12. 12.

    Ohmori, K., Katsuki, H., Chiba, H., Honda, M., Hagihara, Y., Fujiwara, K., Sato, Y., Ueda, K.: Real-time observation of phase-controlled molecular wave-packet interference. Phys. Rev. Lett. 96, 093002 (2006). doi:10.1103/PhysRevLett.96.093002

    Google Scholar 

  13. 13.

    Hosaka, K., Shimada, H., Chiba, H., Katsuki, H., Teranishi, Y., Ohtsuki, Y., Ohmori, K.: Ultrafast Fourier transform with a femtosecond-laser-driven molecule. Phys. Rev. Lett. 104, 180501 (2010). doi:10.1103/PhysRevLett.104.180501

    Google Scholar 

  14. 14.

    Okano, Y., Katsuki, H., Nakagawa, Y., Takahashi, H., Nakamura, K.G., Ohmori, K.: Optical manipulation of coherent phonons in superconducting \({\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{7-\delta }\) thin films. Faraday Discuss. 153, 375–382 (2011). doi:10.1039/C1FD00070E. invited paper

  15. 15.

    Katsuki, H., Kayanuma, Y., Ohmori, K.: Optically engineered quantum interference of delocalized wave functions in a bulk solid: The example of solid para-hydrogen. Phys. Rev. B 88, 014507 (2013). doi:10.1103/PhysRevB.88.014507

    ADS  Article  Google Scholar 

  16. 16.

    Katsuki, H., Delagnes, J.C., Hosaka, K., Ishioka, K., Chiba, H., Zijlstra, E.S., Garcia, M.E., Takahashi, H., Watanabe, K., Kitajima, M., Matsumoto, Y., Nakamura, K.G., Ohmori, K.: All-optical control and visualization of ultrafast two-dimensional atomic motions in a single crystal of bismuth. Nat. Commun. 4, 2801 (2013). doi:10.1038/ncomms3801

    Google Scholar 

  17. 17.

    Goto, H., Katsuki, H., Ibrahim, H., Chiba, H., Ohmori, K.: Strong-laser-induced quantum interference. Nat. Phys. 7, 383–385 (2011). doi:10.1038/nphys1960

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges Professor Nobuyuki Takei (IMS) and Professor Christian Sommer (IMS) for the measurements with ultracold Rb atoms. These works have been supported by Grant-in-Aid for Scientific Research by JSPS, CREST by JST, and Photon-Frontier-Consortium Project by MEXT of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenji Ohmori.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohmori, K. Optically Engineered Quantum States in Ultrafast and Ultracold Systems. Found Phys 44, 813–818 (2014). https://doi.org/10.1007/s10701-014-9773-5

Download citation

Keywords

  • Quantum-classical boundary
  • Wavefunction
  • Laser
  • Wave packet
  • Interferometry
  • Coherent control
  • Femtosecond
  • Attosecond
  • Ultrafast
  • Quantum simulator
  • Molecular computer
  • Fourier transform