Foundations of Physics

, Volume 44, Issue 8, pp 856–872 | Cite as

Large Scale Integrated Photonics for Twenty-First Century Information Technologies

A “Moore’s Law” for Optics
  • Raymond G. Beausoleil


In this paper, we will review research done by the Large-Scale Integrated Photonics group at HP Laboratories, and in particular we will discuss applications of optical resonances in dielectric microstructures and nanostructures to future classical and quantum information technologies. Our goal is to scale photonic technologies over the next decade in much the same way as electronics over the past five, thereby establishing a Moore’s Law for optics.


Classical optics Quantum optics Integrated photonics  Information technology 


  1. 1.
    Moore, E.: Cramming more components onto integrated circuits. Electron 38, 114–117 (1965)Google Scholar
  2. 2.
    Beausoleil, R.G.: Large-scale integrated photonics for high-performance interconnects. J. Emerg. Technol. Comput. Syst. 7, 6:1–6:54 (2011). doi: 10.1145/1970406.1970408 CrossRefGoogle Scholar
  3. 3.
    Santori, C., Barclay, P.E., Fu, K.M.C., Beausoleil, R.G., Spillane, S., Fisch, M.: Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology 21(27), 274008 (2010). Google Scholar
  4. 4.
    Beausoleil, R., McLaren, M., Jouppi, N.: Photonic architectures for high-performance data centers. IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013). doi: 10.1109/JSTQE.2012.2236080 CrossRefGoogle Scholar
  5. 5.
    Liang, D., Bowers, J.E.: Recent progress in lasers on silicon. Nat. Photon bf 4(8), 511–517 (2010).
  6. 6.
    Liang, D., Fiorentino, M., Okumura, T., Chang, H.H., Spencer, D.T., Kuo, Y.H., Fang, A.W., Dai, D., Beausoleil, R.G., Bowers, J.E.: Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt. Express bf 17(22), 20355–20364 (2009). Google Scholar
  7. 7.
    Liang, D., Fiorentino, M., Srinivasan, S., Todd, S.T., Kurczveil, G., Bowers, J.E., Beausoleil, R.G.: Optimization of hybrid silicon microring lasers. IEEE Photon. J. 3(3), 580–587 (2011)CrossRefGoogle Scholar
  8. 8.
    Liang, D., Fiorentino, M., Srinivasan, S., Bowers, J., Beausoleil, R.: Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J. Sel. Top. Quantum Electron. 17(6), 1528–1533 (2011). doi: 10.1109/JSTQE.2010.2103552 CrossRefGoogle Scholar
  9. 9.
    Liang, D., Bowers, J.: Photonic integration: Si or InP substrates? Electron. Lett. 45(12), 578–581 (2009). doi: 10.1049/el.2009.1279 Google Scholar
  10. 10.
    Liang, D., Fiorentino, M., Todd, S.T., Kurczveil, G., Beausoleil, R.G., Bowers, J.E.: Fabrication of silicon-on-diamond substrate and low-loss optical waveguides. IEEE Photon. Technol. Lett. 23(10), 657–659 (2011). doi: 10.1109/LPT.2011.2123089 ADSCrossRefGoogle Scholar
  11. 11.
    International Technology Roadmap for Semiconductors (ITRS) (2009).
  12. 12.
    Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4(8), 518–526 (2010). Google Scholar
  13. 13.
    Peng, Z., Fattal, D., Fiorentino, M., Beausoleil, R.: CMOS-compatible microring modulators for nanophotonic interconnect. Proceedings of the OSA Topical Meeting on Integrated Photonics Research (IPR), Optical Society of America, (2010), p. IWA2.
  14. 14.
    Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., ichi Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., Morita, H.: Microphotonics devices based on silicon microfabrication technology. IEEE J. Se. Top. Quantum Electron. 11(1), 232–240 (2005). doi: 10.1109/JSTQE.2004.841479 CrossRefGoogle Scholar
  15. 15.
    Vermeulen, D., Selvaraja, S., Verheyen, P., Lepage, G., Bogaerts, W., Absil, P., Thourhout, D.V., Roelkens, G.: High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Opt. Express 18(17), 18278–18283 (2010). Google Scholar
  16. 16.
    Fattal, D., Peng, Z., Tran, T., Vo, S., Fiorentino, M., Brug, J., Beausoleil, R.G.: A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495(7441), 348–351 (2013). Google Scholar
  17. 17.
    Fattal, D., Li, J., Peng, Z., Fiorentino, M., Beausoleil, R.G.: Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4(7), 466–470 (2010). Google Scholar
  18. 18.
    Peng, Z., Fattal, D.A., Faraon, A., Fiorentino, M., Li, J., Beausoleil, R.G.: Reflective silicon binary diffraction grating for visible wavelengths. Opt. Lett. 36(8), 1515–1517 (2011). doi: 10.1364/OL.36.001515.
  19. 19.
    Li, J., Fattal, D., Fiorentino, M., Beausoleil, R.G.: Strong optical confinement between nonperiodic flat dielectric gratings. Phys. Rev. Lett. 106(19), 193901 (2011). doi: 10.1103/PhysRevLett.106.193901 ADSCrossRefGoogle Scholar
  20. 20.
    Twitchen, D., Whitehead, A., Coe, S., Isberg, J., Hammersberg, J., Wikstrom, T., Johansson, E., Ltd, E., Ascot, U.: High-voltage single-crystal diamond diodes. IEEE Trans. Electron Dev. 51(5), 826–828 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8(5), 383–387 (2009). Google Scholar
  22. 22.
    Childress, L., Gurudev Dutt, M.V., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006). doi: 10.1126/science.1131871 ADSCrossRefGoogle Scholar
  23. 23.
    Childress, L., Taylor, J.M., Sorensen, A.S., Lukin, M.D.: Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 52330 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Benjamin, S.C., Browne, D.E., Fitzsimons, J., Morton, J.J.L.: Brokered graph-state quantum computation. New J. Phys. 8, 141 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Cabrillo, C., Cirac, J.I., García-Fernández, P., Zoller, P.: Creation of entangled states of distant atoms by interference. Phys. Rev. A 59(2), 1025–1033 (1999). doi: 10.1103/PhysRevA.59.1025 ADSCrossRefGoogle Scholar
  26. 26.
    Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sorensen, A.S., Hemmer, P.R, Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010). Google Scholar
  27. 27.
    Santori, C., Fattal, D., Fu, K.M.C., Barclay, P.E., Beausoleil, R.G.: On the indistinguishability of Raman photons. New J. Phys. 11(12), 123009 (2009). Google Scholar
  28. 28.
    Barclay, P.E., Santori, C., Fu, K.M., Beausoleil, R.G., Painter, O.: Coherent interference effects in a nano-assembled optical cavity-QED system. Opt. Express 17(10), 8081 (2009). Google Scholar
  29. 29.
    Fu, K., Santori, C., Spillane, S., Beausoleil, R.: Quantum information processing with diamond nitrogen-vacancy centers coupled to microcavities. Proc. SPIE 6903, 69030M (2008)CrossRefGoogle Scholar
  30. 30.
    Fu, K.M.C., Santori, C., Barclay, P.E., Aharonovich, I., Prawer, S., Meyer, N., Holm, A.M., Beausoleil, R.G.: Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide Appl. Phys. Lett. 93(23), 234107 2008, 10(1063/1), p. 3045950.
  31. 31.
    Barclay, P.E., Fu, K.M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95(19), 191115 2009, 10(1063/1), pp. 3262948.
  32. 32.
    Barclay, P.E., Fu, K.M., Santori, C., Beausoleil, R.G.: Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Opt. Express 17(12), 9588–9601 (2009).
  33. 33.
    Fu, K.M.C., Barclay, P.E., Santori, C., Faraon, A., Beausoleil, R.G.: New J. Phys. 13(5), 055023 (2011). Google Scholar
  34. 34.
    Barclay, P.E., Fu, K.M.C., Santori, C., Faraon, A., Beausoleil, R.G.: Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys. Rev. X 1, 011007 (2011). doi: 10.1103/PhysRevX.1.011007.
  35. 35.
    Faraon, A., Barclay, P.E., Santori, C., Fu, K.M.C., Beausole, R.G.: Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photon. 5(5), 301–305 (2011). doi: 10.1038/nphoton.2011.52 ADSCrossRefGoogle Scholar
  36. 36.
    Faraon, A., Santori, C., Huang, Z., Acosta, V.M., Beausoleil, R.G.: Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012). doi: 10.1103/PhysRevLett.109.033604 ADSCrossRefGoogle Scholar
  37. 37.
    Faraon, A., Santori, C., Huang, Z., Fu, K.M.C., Acosta, V.M., Fattal, D., Beausoleil, R.G.: Quantum photonic devices in single-crystal diamond. New J. Phys. 15(2), 025010 (2013).
  38. 38.
    The Hearing Aid Museum. Center for Hearing Loss (2013).
  39. 39.
    U.S. Department of Energy. DOE Extreme Scale Computing Technology Roadmap (2010).
  40. 40.
    Green500. The Green500 List: Environmentally Responsible Supercomputing (2010).
  41. 41.
    Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2. Institute of Physics Publishing, Bristol (2003)Google Scholar
  42. 42.
    Miller, D.A.B.: Are optical transistors the logical next step?. Nat. Photon. 4(1), 3–5 (2010).
  43. 43.
    Mabuchi, H.: Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability. Appl. Phys. Lett. 98(19), 193109 (2011). doi: 10.1063/1.3589994.
  44. 44.
    Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, Burlington (2008)Google Scholar
  45. 45.
    Soljačić, M., Ibanescu, M., Johnson, S.G., Fink, Y., Joannopoulos, J.D.: Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66(5), 055601 (2002). doi: 10.1103/PhysRevE.66.055601 ADSGoogle Scholar
  46. 46.
    Christodoulides, D.N., Khoo, I.C., Salamo, G.J., Stegeman, G.I., Stryland, E.W.V.: Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt. Photon. 2(1), 60–200 (2010).
  47. 47.
    Dulkeith, E., Vlasov, Y.A., Chen, X., Panoiu, N.C., Richard J., Osgood, M.: Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14(12), 5524–5534 (2006). Google Scholar
  48. 48.
    Wagner, S.J., Meier, J., Helmy, A.S., Aitchison, J.S., Sorel, M., Hutchings, D.C.: Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap. J. Opt. Soc. Am. B 24(7), 1557–1563 (2007). Google Scholar
  49. 49.
    Park, S.H., Morhange, J.F., Jeffery, A.D., Morgan, R.A., Chavez-Pirson, A., Gibbs, H.M., Koch, S.W., Peyghambarian, N., Derstine, M., Gossard, A.C., English, J.H., Weigmann, W.: Measurements of room-temperature band-gap-resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs. Appl. Phys. Lett. 52(15), 1201–1203 1988, 10(1063/1), pp. 99157.
  50. 50.
    Xu, D., Fattal, R.G.: Beausoleil, silicon microring resonators with 1.5-\({\mu }\)m radius. Opt. Express 16(6), 4309–4315 (2008). :
  51. 51.
    Sheik-Bahae, M., Hagan, D.J., Van Stryland, E.W.: Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96–99 (1990). doi: 10.1103/PhysRevLett.65.96 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.HP LaboratoriesPalo AltoUSA

Personalised recommendations