Foundations of Physics

, Volume 44, Issue 5, pp 483–491 | Cite as

Gravity-Related Wave Function Collapse

Is Superfluid He Exceptional?
  • Lajos DiósiEmail author


The gravity-related model of spontaneous wave function collapse, a longtime hypothesis, damps the massive Schrödinger Cat states in quantum theory. We extend the hypothesis and assume that spontaneous wave function collapses are responsible for the emergence of Newton interaction. Superfluid helium would then show significant and testable gravitational anomalies.


Wave function collapse Newton gravity Superfluid He 



The author thanks the organizers of the International Workshop on Horizons of Quantum Physics for their invitation and generous support. This research was supported by the Hungarian Scientific Research Fund under Grant No. 75129 and by the EU COST Action MP1006.


  1. 1.
    Diósi, L.: A quantum-stochastic gravitation model and the reduction of the wavefunction. Thesis in Hungarian. (1986)
  2. 2.
    Diósi, L.: A universal master equation for the gravitational violation of the quantum mechanics. Phys. Lett. A 120, 377–381 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994)Google Scholar
  5. 5.
    Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Penrose, R.: Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. A 356, 1927–1939 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Penrose, R.: The Road to Reality. Jonathan Cape Publishers, London (2004)Google Scholar
  8. 8.
    Adler, S.L.: Comments on proposed gravitational modifications of Schrödinger dynamics and their experimental implications. J. Phys. A 40, 755–764 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401-1–130401-4 (2003)Google Scholar
  10. 10.
    Christian, J.: Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett. 95, 160403-1–160403-4 (2005)Google Scholar
  11. 11.
    Vanner, M.R., Pikovski, I., Cole, G.D., Kim, M.S., Brukner, Č., Hammerer, K., Milburn, G.J., Aspelmeyer, M.: Pulsed quantum optomechanics. PNAS 108, 16182–16187 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Romero-Isart, O.: Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121-1–052121-17 (2011)Google Scholar
  13. 13.
    Li, T., Kheifets, S., Raizen, M.G.: Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011)CrossRefGoogle Scholar
  14. 14.
    Pepper, B., Ghobadi, R., Jeffrey, E., Simon, C., Bouwmeester, D.: Optomechanical superpositions via nested interferometry. Phys. Rev. Lett. 109, 023601-1–023601-5 (2012)Google Scholar
  15. 15.
    Diósi, L.: Gravity-related wave function collapse: mass density resolution. J. Phys. Conf. Ser. 442, 012001-1–012001-7 (2013)Google Scholar
  16. 16.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257–426 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pearl, P.: Wavefunction collapse and conservation laws. Found. Phys. 30, 1145–1160 (2000)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Diósi, L.: Notes on certain Newton gravity mechanisms of wave function localisation and decoherence. J. Phys. A 40, 2989–2995 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Diósi, L., Lukács, B.: In favor of a Newtonian quantum gravity. Annln. Phys. 44, 488–492 (1987)CrossRefGoogle Scholar
  20. 20.
    Diósi, L.: Quantum measurement and gravity for each other. In: Cvitanovic, P., Percival, I., Wirzba, A. (eds.) Quantum Chaos—Quantum Measurement, p. 299. Kluwer, Dordrecht (1992)Google Scholar
  21. 21.
    Diósi, L.: Does wave function collapse cause gravity? J. Phys. Conf. Ser. 174, 012002-1–012002-6 (2009)Google Scholar
  22. 22.
    Diósi, L.: Note on possible emergence time of Newtonian gravity. Phys. Lett. A 377, 1782–1783 (2013)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Wigner Research Center for PhysicsBudapest 114 Hungary

Personalised recommendations