Skip to main content
Log in

Type-Decomposition of a Synaptic Algebra

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A synaptic algebra is a generalization of the self-adjoint part of a von Neumann algebra. In this article we extend to synaptic algebras the type-I/II/III decomposition of von Neumann algebras, AW-algebras, and JW-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, New York (1971). ISBN 0-387-05090-6

    Book  MATH  Google Scholar 

  2. Beran, L.: Orthomodular Lattices. An Algebraic Approach. Mathematics and Its Applications, vol. 18. Reidel, Dordrecht (1985)

    Book  Google Scholar 

  3. Chevalier, G.: Around the relative center property in orthomodular lattices. Proc. Am. Math. Soc. 112, 935–948 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Mathematics and Its Applications, vol. 516. Kluwer Academic, Dordrecht (2000)

    Book  MATH  Google Scholar 

  5. Foulis, D.J.: A note on orthomodular lattices. Port. Math. 21, 65–72 (1962)

    MathSciNet  MATH  Google Scholar 

  6. Foulis, D.J.: Synaptic algebras. Math. Slovaca 60(5), 631–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Foulis, D.J., Pulmannová, S.: Generalized Hermitian algebras. Int. J. Theor. Phys. 48(5), 1320–1333 (2009)

    Article  MATH  Google Scholar 

  9. Foulis, D.J., Pulmannová, S.: Projections in synaptic algebras. Order 27(2), 235–257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foulis, D.J., Pulmannová, S.: Centrally orthocomplete effect algebras. Algebra Univers. 64, 283–307 (2010). doi:10.007/s00012-010-0100-5

    Article  MATH  Google Scholar 

  11. Foulis, D.J., Pulmannová, S.: Type-decomposition of an effect algebra. Found. Phys. 40, 1543–1565 (2010). doi:10.1007/s10701-009-9344-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Foulis, D.J., Pulmannová, S.: Regular elements in generalized Hermitian algebras. Math. Slovaca 61(2), 155–172 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foulis, D.J., Pulmannová, S.: Hull mappings and dimension effect algebras. Math. Slovaca 61(3), 1–38 (2011)

    Article  MathSciNet  Google Scholar 

  14. Foulis, D.J., Pulmannová, S.: Symmetries in synaptic algebras. arXiv:1304.4378

  15. Gudder, S., Pulmannová, S., Bugajski, S., Beltrametti, E.: Convex and linear effect algebras. Rep. Math. Phys. 44(3), 359–379 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Haag, R.: Local Quantum Physics, Fields, Particles, Algebras. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  17. Holland, S.S. Jr.: Distributivity and perspectivity in orthomodular lattices. Trans. Am. Math. Soc. 112, 330–343 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holland, S.S. Jr.: An m-orthocomplete orthomodular lattice is m-complete. Proc. Am. Math. Soc. 24, 716–718 (1970)

    MathSciNet  MATH  Google Scholar 

  19. Jenča, G., Pulmannová, S.: Orthocomplete effect algebras. Proc. Am. Math. Soc. 131, 2663–2671 (2003)

    Article  MATH  Google Scholar 

  20. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)

    MATH  Google Scholar 

  21. Kaplansky, I.: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61, 524–541 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. McCrimmon, K.: A Taste of Jordan Algebras. Universitext. Springer, New York (2004). ISBN 0-387-95447-3

    MATH  Google Scholar 

  23. Pulmannová, S.: A note on ideals in synaptic algebras. Math. Slovaca 62(6), 1091–1104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rédei, M.: Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Stud. Hist. Philos. Mod. Phys. 27(4), 493–510 (1996)

    Article  MATH  Google Scholar 

  25. Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Int. J. Theor. Phys. 42(7), 1425–1433 (2003)

    Article  MATH  Google Scholar 

  26. Topping, D.M.: Jordan Algebras of Self-Adjoint Operators. A.M.S. Memoir, vol. 53. AMS, Providence (1965)

    Google Scholar 

  27. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Heidelberg (1932)

    MATH  Google Scholar 

  28. von Neumann, J.: Continuous Geometry. Princeton Univ. Press, Princeton (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Foulis.

Additional information

The second author was supported by Research and Development Support Agency under the contract No. APVV-0178-11 and grant VEGA 2/0059/12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulis, D.J., Pulmannová, S. Type-Decomposition of a Synaptic Algebra. Found Phys 43, 948–968 (2013). https://doi.org/10.1007/s10701-013-9727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9727-3

Keywords

Navigation