Foundations of Physics

, Volume 43, Issue 6, pp 792–804 | Cite as

The Quantum Harmonic Oscillator in the ESR Model

Article

Abstract

The ESR model proposes a new theoretical perspective which incorporates the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual framework, reinterpreting quantum probabilities as conditional on detection instead of absolute. We have provided in some previous papers mathematical representations of the physical entities introduced by the ESR model, namely observables, properties, pure states, proper and improper mixtures, together with rules for calculating conditional and overall probabilities, and for describing transformations of states induced by measurements. We study in this paper the relevant physical case of the quantum harmonic oscillator in our mathematical formalism. We reinterpret the standard quantum rules for probabilities, provide new expressions for absolute probabilities, and show how the standard state transformations must be modified according to the ESR model.

Keywords

Quantum mechanics Harmonic oscillator State transformations ESR model 

References

  1. 1.
    Bell, J.S.: Rev. Mod. Phys. 38, 447 (1966) ADSMATHCrossRefGoogle Scholar
  2. 2.
    Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967) MathSciNetMATHGoogle Scholar
  3. 3.
    Bell, J.S.: Physics 1, 195 (1964) Google Scholar
  4. 4.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880 (1969) ADSCrossRefGoogle Scholar
  5. 5.
    Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1991) Google Scholar
  6. 6.
    Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1996) Google Scholar
  7. 7.
    Busch, P., Lahti, P.J.: Found. Phys. 26, 875 (1996) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Busch, P., Shimony, A.: Stud. Hist. Philos. Mod. Phys. 27B, 397 (1996) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Busch, P.: Int. J. Theor. Phys. 37, 241 (1998) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Pusey, M.F., Barrett, J., Rudolph, T.: Nat. Phys. 8, 476 (2012) CrossRefGoogle Scholar
  11. 11.
    Schlosshauer, M., Fine, A.: Phys. Rev. Lett. 108, 260404 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    Garola, C.: Found. Phys. 32, 1597 (2002) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Garola, C.: Found. Phys. Lett. 16, 605 (2003) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Garola, C., Pykacz, J.: Found. Phys. 34, 449 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Garola, C.: In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations—4, p. 247. American Institute of Physics, New York (2007) Google Scholar
  16. 16.
    Sozzo, S.: In: Adenier, G., et al. (eds.) Quantum Theory: Reconsideration of Foundations—4, p. 334. American Institute of Physics, New York (2007) Google Scholar
  17. 17.
    Garola, C.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics—5, p. 42. American Institute of Physics, New York (2009) Google Scholar
  18. 18.
    Sozzo, S.: In: Accardi, L., et al. (eds.) Foundations of Probability and Physics—5, p. 381. American Institute of Physics, New York (2009) Google Scholar
  19. 19.
    Garola, C., Sozzo, S.: Europhys. Lett. 86, 20009 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Garola, C., Sozzo, S.: Int. J. Theor. Phys. 49, 3101 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sozzo, S., Garola, C.: Int. J. Theor. Phys. 49, 3262 (2010) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Garola, C., Sozzo, S.: In: Khrennikov, A.Y. (ed.) Quantum Theory: Reconsideration of Foundations—5, pp. 58–71. American Institute of Physics, New York (2010) Google Scholar
  23. 23.
    Garola, C., Sozzo, S.: Int. J. Theor. Phys. 50, 3787 (2011) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Garola, C., Sozzo, S.: Theor. Math. Phys. 168, 912 (2011) CrossRefGoogle Scholar
  25. 25.
    Garola, C., Sozzo, S.: Found. Phys. 41, 424 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Garola, C., Sozzo, S.: J. Phys. A 45, 075303 (2012) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Genovese, M.: Phys. Rep. 413, 319 (2005) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1973) Google Scholar
  29. 29.
    Moshinsky, M., Smirnov, Y.F.: The Harmonic Oscillator in Modern Physics. Overseas Publishers Association, Amsterdam (1996) MATHGoogle Scholar
  30. 30.
    Bartlett, S.D., Sanders, B.C., Varcoe, B.T.H., de Guise, H.: In: Clark, R.G. (ed.) Proceedings of IQC’01, p. 344. Rinton, Princeton (2001) Google Scholar
  31. 31.
    Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981) MATHGoogle Scholar
  32. 32.
    Ludwig, G.: Foundations of Quantum Mechanics I. Springer, Berlin (1983) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Center Leo Apostel (CLEA)Brussels Free University (VUB)BrusselsBelgium
  2. 2.Department of Mathematics and PhysicsUniversity of SalentoLecceItaly

Personalised recommendations