Anderson, E.: Problem of time in quantum gravity (2012). doi:10.1002/andp.201200147
Bianchi, E., Krajewski, T., Rovelli, C., Vidotto, F.: Cosmological constant in spinfoam cosmology. Phys. Rev. D 83, 104015 (2011)
ADS
Article
Google Scholar
Bianchi, E., Magliaro, E., Perini, C.: Coherent spin-networks. Phys. Rev. D 82, 024012 (2010)
ADS
Article
Google Scholar
Bianchi, E., Rovelli, C., Vidotto, F.: Towards spinfoam cosmology. Phys. Rev. D 82, 084035 (2010)
ADS
Article
Google Scholar
Craig, D., Singh, P.: Consistent histories in quantum cosmology. Found. Phys. 41, 371–379 (2011)
MathSciNet
ADS
MATH
Article
Google Scholar
Dona, P., Speziale, S.: Introductory lectures to loop quantum gravity (2010). arXiv:1007.0402v2 [gr-qc]
Engle, J., Livine, E., Pereira, R., Rovelli, C.: Lqg vertex with finite immirzi parameter. Nucl. Phys. B 799, 136–149 (2008)
MathSciNet
ADS
MATH
Article
Google Scholar
Freidel, L., Speziale, S.: Twisted geometries: a geometric parametrisation of su(2) phase space. Phys. Rev. D 82, 084040 (2010)
ADS
Article
Google Scholar
Gambini, R., Porto, R., Pullin, J.: Fundamental decoherence in quantum gravity. Braz. J. Phys. 35, 266–270 (2005)
ADS
Article
Google Scholar
Gell-Mann, M., Hartle, J.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007)
ADS
Article
Google Scholar
Gell-Mann, M., Hartle, J.B.: Decoherent histories quantum mechanics with one ‘real’ fine-grained history (2011). arXiv:1106.0767v3 [quant-ph]
Griffiths, R.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)
Google Scholar
Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219–272 (1984)
ADS
MATH
Article
Google Scholar
Griffiths, R.B.: Bohmian mechanics and consistent histories. Phys. Lett. A 261(5–6), 10 (1995)
Google Scholar
Halliwell, J.: Probabilities in quantum cosmological models: a decoherent histories analysis using a complex potential. Phys. Rev. D 80(12), 124032 (2009)
ADS
Article
Google Scholar
Halliwell, J.: Macroscopic superpositions, decoherence, and the emergence of hydrodynamic behaviour. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Chap. 3, pp. 99–120. Oxford University Press, London (2010)
Google Scholar
Halliwell, J., Yearsley, J.: Arrival times, complex potentials, and decoherent histories. Phys. Rev. A 79(6), 062101 (2009)
MathSciNet
ADS
Article
Google Scholar
Halliwell, J., Yearsley, J.: On the relationship between complex potentials and strings of projection operators. J. Phys. A, Math. Gen. 43, 5303 (2010)
MathSciNet
ADS
Article
Google Scholar
Halliwell, J., Yearsley, J.: Pitfalls of path integrals: amplitudes for spacetime regions and the quantum Zeno effect (2012). doi:10.1103/PhysRevD.86.024016
Halliwell, J., Zafiris, E.: Decoherent histories approach to the arrival time problem. Phys. Rev. D 57, 3351–3364 (1998)
MathSciNet
ADS
Article
Google Scholar
Hartle, J.: Quasiclassical realms. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Chap. 2, pp. 73–98. Oxford University Press, London (2010)
Google Scholar
Hartle, J.B.: Space-time quantum mechanics and the quantum mechanics of space-time. Lectures given at the 1992 Les Houches École d’été, Gravitation et Quantifications (1992). arXiv:gr-qc/9304006v2
Kaminski, W., Kisielowski, M., Lewandowski, J.: Spin-foams for all loop quantum gravity. Class. Quantum Gravity 27, 095006 (2010)
MathSciNet
ADS
Article
Google Scholar
Oriti, D.: Space-time geometry from algebra: spin foam models for nonperturbative quantum gravity. Rep. Prog. Phys. 64, 1703–1756 (2001)
MathSciNet
ADS
Article
Google Scholar
Perez, A.: The spin foam representation of loop quantum gravity. In: Oriti, D. (ed.) Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, vol. 15, pp. 272–289. Cambridge University Press, Cambridge (2009)
Chapter
Google Scholar
Perini, C., Rovelli, C., Speziale, S.: Self-energy and vertex radiative corrections in lqg. Phys. Lett. B 682, 78–84 (2009)
ADS
Article
Google Scholar
Rovelli, C.: Quantum gravity. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)
Google Scholar
Rovelli, C.: Zakopane lectures on loop gravity (2011). arXiv:1102.3660v5 [gr-qc]
Rovelli, C., Smerlak, M.: In quantum gravity, summing is refining. Class. Quantum Gravity 29, 055004 (2012)
MathSciNet
ADS
Article
Google Scholar
Savvidou, N.: General relativity histories theory. Braz. J. Phys. 35, 307–315 (2005)
ADS
Article
Google Scholar
Schroeren, D.P.B.: On the quantum Zeno effect in loop gravity (2013, in preparation)
Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)
MATH
Book
Google Scholar
Vidotto, F.: Many-nodes/many-links spinfoam: the homogeneous and isotropic case. Class. Quantum Gravity 28, 245005 (2011)
MathSciNet
ADS
Article
Google Scholar
Wallace, D.: Decoherence and ontology. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Chap. 1, pp. 53–72. Oxford University Press, London (2010)
Google Scholar
Wallden, P.: Spacetime coarse grainings and the problem of time in the decoherent histories approach to quantum theory. Int. J. Theor. Phys. 47, 1512–1532 (2008)
MathSciNet
MATH
Article
Google Scholar
Yearsley, J.: Aspects of time in quantum theory. PhD thesis, Imperial College London (2011). arXiv:1110.5790v1 [quant-ph]