Foundations of Physics

, Volume 43, Issue 1, pp 174–181

String Theory



After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.


  1. 1.
    Nambu, Y.: Quark model and the factorization of the Veneziano amplitude. In: Symmetries and Quark Models, pp. 269–278. Detroit (1969) Google Scholar
  2. 2.
    Eguchi, T., et al. (eds.): Broken Symmetry, pp. 258–267 (1969) Google Scholar
  3. 3.
    Susskind, L.: Dual-symmetric theory of hadrons. 1. Nuovo Cimento A 69S10, 457 (1970) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Polchinski, J.: Dirichlet Branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724 (1995). arXiv:hep-th/9510017 MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200 MathSciNetADSMATHGoogle Scholar
  7. 7.
    ’t Hooft, G.: Dimensional reduction in quantum gravity (2009). arXiv:gr-qc/9310026
  8. 8.
    Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations