Foundations of Physics

, Volume 43, Issue 1, pp 156–173 | Cite as

Evolving Notions of Geometry in String Theory

Article

Abstract

The unfolding of string theory has led to a successive refinement and generalization of our understanding of geometry and topology. A brief overview of these developments is given.

Keywords

String theory Geometry Topology Quantum gravity 

References

  1. 1.
    Nambu, Y.: Quark model and the factorization of the Veneziano amplitude. In: Symmetries and Quark Models, pp. 269–278 (1970) Google Scholar
  2. 2.
    Nielsen, H.B.: An almost physical interpretation of the integrand of the n-point Veneziano model. In: 15th International Conference on High Energy Physics, Kiev (1970) Google Scholar
  3. 3.
    Susskind, L.: Dual symmetric theory of hadrons. 1. Nuovo Cimento A 69, 457–496 (1970) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Veneziano, G.: Construction of a crossing—symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cimento A 57, 190–197 (1968) ADSCrossRefGoogle Scholar
  5. 5.
    Lovelace, C.: Pomeron form-factors and dual Regge cuts. Phys. Lett. B 34, 500–506 (1971) ADSCrossRefGoogle Scholar
  6. 6.
    Goddard, P., Goldstone, J., Rebbi, C., Thorn, C.B.: Quantum dynamics of a massless relativistic string. Nucl. Phys. B 56, 109–135 (1973) ADSCrossRefGoogle Scholar
  7. 7.
    Ramond, P.: Dual theory for free fermions. Phys. Rev. D 3, 2415–2418 (1971) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Neveu, A., Schwarz, J.: Factorizable dual model of pions. Nucl. Phys. B 31, 86–112 (1971) ADSCrossRefGoogle Scholar
  9. 9.
    Neveu, A., Scherk, J.: Connection between Yang-Mills fields and dual models. Nucl. Phys. B 36, 155–161 (1972) ADSCrossRefGoogle Scholar
  10. 10.
    Scherk, J., Schwarz, J.H.: Dual models and the geometry of space-time. Phys. Lett. B 52, 347 (1974) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Yoneya, T.: Connection of dual models to electrodynamics and gravidynamics. Prog. Theor. Phys. 51, 1907–1920 (1974) ADSCrossRefGoogle Scholar
  12. 12.
    Gliozzi, F., Scherk, J., Olive, D.I.: Supersymmetry, supergravity theories and the dual spinor model. Nucl. Phys. B 122, 253–290 (1977) ADSCrossRefGoogle Scholar
  13. 13.
    Friedan, D.: Nonlinear models in two + epsilon dimensions. Phys. Rev. Lett. 45, 1057 (1980) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Friedan, D.H.: Nonlinear models in two + epsilon dimensions. Ann. Phys. 163, 318 (1985). Ph.D. Thesis MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Fradkin, E., Tseytlin, A.A.: Effective field theory from quantized strings. Phys. Lett. B 158, 316 (1985). Revised version of Print-84-0928 MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Callan, J., Curtis, G., Martinec, E., Perry, M., Friedan, D.: Strings in background fields. Nucl. Phys. B 262, 593 (1985) ADSCrossRefGoogle Scholar
  17. 17.
    Sen, A.: The heterotic string in arbitrary background field. Phys. Rev. D 32, 2102 (1985). Revised version ADSCrossRefGoogle Scholar
  18. 18.
    Polchinski, J.: String Theory. Vol. 1: An Introduction to the Bosonic String Google Scholar
  19. 19.
    Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Veneziano, G.: A stringy nature needs just two constants. Europhys. Lett. 2, 199 (1986) ADSCrossRefGoogle Scholar
  22. 22.
    Konishi, K., Paffuti, G., Provero, P.: Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276 (1990) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Witten, E.: Nonabelian bosonization in two-dimensions. Commun. Math. Phys. 92, 455–472 (1984) MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Martinec, E.J.: Algebraic geometry and effective Lagrangians. Phys. Lett. B 217, 431 (1989) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Vafa, C., Warner, N.P.: Catastrophes and the classification of conformal theories. Phys. Lett. B 218, 51 (1989) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Dixon, L.J., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. Nucl. Phys. B 261, 678–686 (1985) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Dixon, L.J., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. 2. Nucl. Phys. B 274, 285–314 (1986) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Aspinwall, P.S.: Resolution of orbifold singularities in string theory. arXiv:hep-th/9403123. To appear in ‘Essays on Mirror Manifolds 2’
  29. 29.
    Adams, A., Polchinski, J., Silverstein, E.: Don’t panic! Closed string tachyons in ALE space-times. J. High Energy Phys. 0110, 029 (2001). hep-th/0108075 MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Witten, E.: Phases of N=2 theories in two-dimensions. Nucl. Phys. B 403, 159–222 (1993). arXiv:hep-th/9301042 MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory. Nucl. Phys. B 416, 414–480 (1994). arXiv:hep-th/9309097 MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    Strominger, A.: Massless black holes and conifolds in string theory. Nucl. Phys. B 451, 96–108 (1995). arXiv:hep-th/9504090 MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Greene, B.R., Morrison, D.R., Strominger, A.: Black hole condensation and the unification of string vacua. Nucl. Phys. B 451, 109–120 (1995). arXiv:hep-th/9504145 MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    Polchinski, J.: Dirichlet branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724–4727 (1995). arXiv:hep-th/9510017 MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Strominger, A.: Heterotic solitons. Nucl. Phys. B 343, 167–184 (1990) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Hull, C.: String dynamics at strong coupling. Nucl. Phys. B 468, 113–154 (1996). arXiv:hep-th/9512181 MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Harvey, J.A., Kraus, P., Larsen, F., Martinec, E.J.: D-branes and strings as noncommutative solitons. J. High Energy Phys. 0007, 042 (2000). arXiv:hep-th/0005031 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Candelas, P., Green, P.S., Hubsch, T.: Rolling among Calabi-Yau vacua. Nucl. Phys. B 330, 49 (1990) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Reid, M.: The moduli space of 3-folds with k=0 may nevertheless be irreducible. Math. Ann. 278, 329–334 (1987). doi:10.1007/BF01458074 MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Douglas, M.R., Kabat, D.N., Pouliot, P., Shenker, S.H.: D-branes and short distances in string theory. Nucl. Phys. B 485, 85–127 (1997). arXiv:hep-th/9608024 MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    Li, M., Yoneya, T.: D particle dynamics and the space-time uncertainty relation. Phys. Rev. Lett. 78, 1219–1222 (1997). arXiv:hep-th/9611072. Title changed in journal ADSCrossRefGoogle Scholar
  43. 43.
    D’Eath, P., Payne, P.: Gravitational radiation in high speed black hole collisions. 3. Results and conclusions. Phys. Rev. D 46, 694–701 (1992) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Eardley, D.M., Giddings, S.B.: Classical black hole production in high-energy collisions. Phys. Rev. D 66, 044011 (2002). arXiv:gr-qc/0201034 MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995). arXiv:hep-th/9503124 MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    Banks, T., Fischler, W., Shenker, S., Susskind, L.: M theory as a matrix model: A conjecture. Phys. Rev. D 55, 5112–5128 (1997). arXiv:hep-th/9610043 MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Kogut, J.B., Soper, D.E.: Quantum electrodynamics in the infinite momentum frame. Phys. Rev. D 1, 2901–2913 (1970) ADSCrossRefGoogle Scholar
  48. 48.
    Banks, T., Fischler, W., Klebanov, I.R., Susskind, L.: Schwarzschild black holes from matrix theory. Phys. Rev. Lett. 80, 226–229 (1998). arXiv:hep-th/9709091 MathSciNetADSMATHCrossRefGoogle Scholar
  49. 49.
    Hayden, P., Preskill, J.: Black holes as mirrors: Quantum information in random subsystems. J. High Energy Phys. 0709, 120 (2007). arXiv:0708.4025 MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 0810, 065 (2008). arXiv:0808.2096 ADSCrossRefGoogle Scholar
  51. 51.
    ’t Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985) MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743–3761 (1993). arXiv:hep-th/9306069 MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026. Essay dedicated to Abdus Salam
  54. 54.
    Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995). arXiv:hep-th/9409089 MathSciNetADSMATHCrossRefGoogle Scholar
  55. 55.
    Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002). arXiv:hep-th/0203101 MathSciNetADSMATHCrossRefGoogle Scholar
  56. 56.
    Maldacena, J.M.: The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200 MathSciNetADSMATHGoogle Scholar
  57. 57.
    Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111 MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Polchinski, J., Strassler, M.J.: The String dual of a confining four-dimensional gauge theory. arXiv:hep-th/0003136
  59. 59.
    Polchinski, J., Strassler, M.J.: Deep inelastic scattering and gauge/string duality. J. High Energy Phys. 0305, 012 (2003). arXiv:hep-th/0209211 MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    Sakai, T., Sugimoto, S.: Low energy hadron physics in holographic QCD. Prog. Theor. Phys. 113, 843–882 (2005). arXiv:hep-th/0412141 ADSMATHCrossRefGoogle Scholar
  61. 61.
    Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). arXiv:hep-th/9803131 MathSciNetMATHGoogle Scholar
  62. 62.
    Susskind, L., Witten, E.: The holographic bound in anti-de Sitter space. arXiv:hep-th/9805114
  63. 63.
    Craps, B., Sethi, S., Verlinde, E.P.: A matrix big bang. J. High Energy Phys. 0510, 005 (2005). arXiv:hep-th/0506180 MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Wald, R.M.: The thermodynamics of black holes. Living Rev. Relativ. 4, 6 (2001). arXiv:gr-qc/9912119 ADSGoogle Scholar
  65. 65.
    Jacobson, T.: Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). arXiv:gr-qc/9504004 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Enrico Fermi Institute and Dept. of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations