Foundations of Physics

, Volume 42, Issue 2, pp 241–255 | Cite as

Reichenbach’s Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom

  • Gábor Hofer-Szabó
  • Péter Vecsernyés


In the paper it will be shown that Reichenbach’s Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A, B supported in spacelike separated double cones \({\mathcal{O}}_{a}\) and \({\mathcal{O}}_{b}\), respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of \({\mathcal{O}}_{a}\) and \({\mathcal{O}}_{b}\) and commuting with the both A and B. Since noncommuting common cause solutions are presented in these states the abandonment of commutativity can modulate this result: noncommutative Common Cause Principles might survive in these models.


Algebraic quantum field theory Reichenbach’s Common Cause Principle Ising model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borthwick, D., Garibaldi, S.: Did a 1-dimensional magnet detect 248-dimensional Lie algebra? arXiv:1012.5407v2 [math-ph]
  2. 2.
    Butterfield, J.: A space-time approach to the Bell inequality. In: Cushing, J., McMullin, E. (eds.) Philosophical Consequences of Quantum Theory, Notre Dame, pp. 114–144 (1989) Google Scholar
  3. 3.
    Fredenhagen, K.: On the modular structure of local algebras of observables. Commun. Math. Phys. 97, 79–89 (1985) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Haag, R.: Local Quantum Physics. Springer, Berlin, (1992) zbMATHGoogle Scholar
  5. 5.
    Halvorson, H., Clifton, R.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Hofer-Szabó, G., Rédei, M., Szabó, L.E.: On Reichenbach’s Common Cause Principle and Reichenbach’s notion of the common cause. Br. J. Philos. Sci. 50, 377–399 (1999) zbMATHCrossRefGoogle Scholar
  7. 7.
    Murphy, G.J.: C -algebras and Operator Theory. Academic Press, London (1990) zbMATHGoogle Scholar
  8. 8.
    Müller, V.F., Vecsernyés, P.: The phase structure of G-spin models. To be published Google Scholar
  9. 9.
    Nill, F., Szlachányi, K.: Quantum chains of Hopf algebras with quantum double cosymmetry. Commun. Math. Phys. 187, 159–200 (1997) ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Rédei, M.: Logically independent von Neumann lattices. Int. J. Theor. Phys. 34, 1711–1718 (1995) zbMATHCrossRefGoogle Scholar
  11. 11.
    Rédei, M.: Logical independence in quantum logic. Found. Phys. 25, 411–422 (1995) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Rédei, M.: Reichenbach’s Common Cause Principle and quantum field theory. Found. Phys. 27, 1309–1321 (1997) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic, Dordrecht (1998) zbMATHGoogle Scholar
  14. 14.
    Rédei, M., Summers, J.S.: Local primitive causality and the Common Cause Principle in quantum field theory. Found. Phys. 32, 335–355 (2002) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rédei, M., Summers, J.S.: Remarks on Causality in relativistic quantum field theory. Int. J. Theor. Phys. 46, 2053–2062 (2007) zbMATHCrossRefGoogle Scholar
  16. 16.
    Reichenbach, H.: The Direction of Time. University of California Press, Los Angeles (1956) Google Scholar
  17. 17.
    Salmon, W.C.: Probabilistic causality. Pac. Philos. Q. 61, 50–74 (1980) Google Scholar
  18. 18.
    Sober, E.: The principle of the common cause. In: Fetzer, J.H. (ed.) Probability and Causality, pp. 211–228. Reidel, Dordrecht (1988) CrossRefGoogle Scholar
  19. 19.
    Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Summers, S.J., Werner, R.: Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. Henri Poincaré, a Phys. Théor. 49, 215–243 (1988) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Szlachányi, K., Vecsernyés, P.: Quantum symmetry and braid group statistics in G-spin models. Commun. Math. Phys. 156, 127–168 (1993) ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Van Fraassen, B.C.: Rational belief and common cause principle. In: R. McLaughlin (ed.) What? Where? When? Why? pp. 193–209. Reidel, Dordrecht (1982) Google Scholar
  23. 23.
    Vecsernyés, P., Zimborás, Z.: Exact algebraic renormalization group and continuum limit in the Ising quantum chain. To be published Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of LogicEötvös UniversityBudapestHungary
  2. 2.Research Institute for Particle and Nuclear PhysicsBudapestHungary

Personalised recommendations