Foundations of Physics

, Volume 41, Issue 7, pp 1200–1213 | Cite as

Representation of Quantum States as Points in a Probability Simplex Associated to a SIC-POVM

  • José Ignacio Rosado


The quantum state of a d-dimensional system can be represented by a probability distribution over the d 2 outcomes of a Symmetric Informationally Complete Positive Operator Valued Measure (SIC-POVM), and then this probability distribution can be represented by a vector of \(\mathbb {R}^{d^{2}-1}\) in a (d 2−1)-dimensional simplex, we will call this set of vectors \(\mathcal{Q}\). Other way of represent a d-dimensional system is by the corresponding Bloch vector also in \(\mathbb {R}^{d^{2}-1}\), we will call this set of vectors \(\mathcal{B}\). In this paper it is proved that with the adequate scaling \(\mathcal{B}=\mathcal{Q}\). Also we indicate some features of the shape of \(\mathcal{Q}\).


Bloch vectors Probability simplex SIC-POVM’s Quantum state space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appleby, D.M., Ericsson, A., Fuchs, C.A.: Properties of qbist state spaces.
  2. 2.
    Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006) zbMATHCrossRefGoogle Scholar
  3. 3.
    Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). (2002)
  4. 4.
    Fuchs, C.A., Schack, R.: A quantum-Bayesian route to quantum-state space. Foundations of Physics (2010) Google Scholar
  5. 5.
    Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369, 431–548 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Kimura, G.: The Bloch vector for n-level systems. Phys. Lett. A 314, 339–349 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Kimura, G., Kossakowski, A.: The Bloch-vector space for n-level systems: the spherical-coordinate point of view. Open Syst. Inf. Dyn. 12, 207–229 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.MadridSpain

Personalised recommendations