Skip to main content

Tunneling Confronts Special Relativity

Abstract

Experiments with evanescent modes and tunneling particles have shown that (i) their signal velocity may be faster than light, (ii) they are described by virtual particles, (iii) they are nonlocal and act at a distance, (iv) experimental tunneling data of phonons, photons, and electrons display a universal scattering time at the tunneling barrier front, and (v) the properties of evanescent, i.e. tunneling modes are not compatible with the special theory of relativity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Nimtz, G.: Found. Phys. 39, 1346–1355 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. 2.

    Nimtz, G.: arXiv:0903.2582v1

  3. 3.

    Hartman, T.: J. Appl. Phys. 33, 3427–3433 (1962)

    ADS  Article  Google Scholar 

  4. 4.

    Feinberg, G.: Phys. Rev. 159, 1089–1105 (1967)

    ADS  Article  Google Scholar 

  5. 5.

    Recami, E.: Riv. Nuovo Cimento 9(6), 1–178 (1986)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Haibel, A., Nimtz, G.: Ann. Phys. (Leipz.) 10, 707–712 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    Esposito, S.: Phys. Rev. E 64, 026609-1–8 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    Olkovsky, V., Recami, E.: Phys. Rep. 214, 339–356 (1992)

    ADS  Article  Google Scholar 

  9. 9.

    Haibel, A., Nimtz, G., Stahlhofen, A.A.: Phys. Rev. E 63, 047601-3 (2001)

    ADS  Article  Google Scholar 

  10. 10.

    Balcou, Ph., Dutriaux, L.: Phys. Rev. Lett. 78, 851–854 (1997)

    ADS  Article  Google Scholar 

  11. 11.

    Mugnai, D., Ranfagni, A., Ronchi, A.: Phys. Lett. A 247, 281–286 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    Steinberg, A., Kwiat, P., Chiao, R.: Phys. Rev. Lett. 71, 708–711 (1993)

    ADS  Article  Google Scholar 

  13. 13.

    Spielmann, C., Szipocs, R., Stingl, A., Krausz, A.: Phys. Rev. Lett. 73, 2308–2311 (1994)

    ADS  Article  Google Scholar 

  14. 14.

    Enders, A., Nimtz, G.: J. Phys. I (Fr.) 2, 1693–1698 (1992)

    ADS  Google Scholar 

  15. 15.

    Sekatskii, S., Letokhov, V.: Phys. Rev. B 64, 233311-1–4 (2001)

    ADS  Article  Google Scholar 

  16. 16.

    Eckle, P., Pfeiffer, A., Cirelli, C., Staudte, A., Dörner, A., Muller, H., Büttiker, M., Keller, J.: Science 322, 1525–1529 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    Yang, S., Page, J., Liu, Z., Cowan, M., Chan, C., Sheng, P.: Phys. Rev. Lett. 88, 104301-1–4 (2002)

    ADS  Google Scholar 

  18. 18.

    Robertson, W., Ash, J., McGaugh, M.: Am. J. Phys. 70, 689–693 (2002)

    ADS  Article  Google Scholar 

  19. 19.

    Nimtz, G., Heitmann, W.: Prog. Quantum Electron. 21, 81–108 (1997)

    ADS  Article  Google Scholar 

  20. 20.

    Nimtz, G.: Prog. Quantum Electron. 27, 417–450 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    Nimtz, G.: Lect. Notes Phys. 702, 506–531 (2006)

    Article  Google Scholar 

  22. 22.

    Boyd, R., Gauthier, D.: Science 326, 1074–1077 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    Low, F., Mende, P.: Ann. Phys. 210, 380–387 (1991)

    MathSciNet  ADS  Article  Google Scholar 

  24. 24.

    Longhi, S., Marano, M., Laporta, P., Belmonte, M.: Phys. Rev. E 64, 055602-4 (2001)

    ADS  Google Scholar 

  25. 25.

    Longhi, S., Laporta, P., Belmonte, M., Recami, E.: Phys. Rev. E 65, 046610-6 (2002)

    ADS  Google Scholar 

  26. 26.

    Shannon, C.E.: Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Shannon, C.E.: Bell Syst. Tech. J. 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  28. 28.

    Sommerfeld, A.: Lectures on Theoretical Physics, Optics. Academic Press, San Diego (1954)

    Google Scholar 

  29. 29.

    Nimtz, G., Haibel, A., Vetter, R.: Phys. Rev. E 66, 037602-4 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    Enders, A., Nimtz, G.: Phys. Rev. E 48, 632–634 (1993)

    ADS  Article  Google Scholar 

  31. 31.

    Olkovsky, V., et al.: J. Phys. I 5, 1351–1365 (1995)

    Article  Google Scholar 

  32. 32.

    Barbero, A., Hernandes-Figueroa, H., Recami, E.: Phys. Rev. E 62, 8628 (2000)

    ADS  Article  Google Scholar 

  33. 33.

    Papoulis, A.: The Fourier Integral and Its Application. McGraw–Hill, New York (1962)

    Google Scholar 

  34. 34.

    Ali, S.T.: Phys. Rev. D 7, 1668–1675 (1973)

    ADS  Article  Google Scholar 

  35. 35.

    Fillard, J.P.: Near Field Optics and Nanoscopy. World Scientific, Singapore (1997)

    Google Scholar 

  36. 36.

    Merzbacher, E.: Quantum Mechanics, 2nd edn. Wiley, New York (1970)

    Google Scholar 

  37. 37.

    Gasiorowicz, S.: Quantum Physics. Wiley, New York (1996)

    Google Scholar 

  38. 38.

    Stahlhofen, A.A., Nimtz, G.: Europhys. Lett. 76, 189–195 (2006)

    ADS  Article  Google Scholar 

  39. 39.

    Carniglia, C., Mandel, L.: Phys. Rev. D 3, 280–296 (1971)

    ADS  Article  Google Scholar 

  40. 40.

    Nimtz, G., Enders, A., Spieker, H.: J. Phys. I (Fr.) 4, 565–570 (1994)

    ADS  Google Scholar 

  41. 41.

    Fayngold, M.: Special Relativity and Motions Faster than Light. Wiley–VCH, Weinheim (2002)

    Book  Google Scholar 

  42. 42.

    Sexl, R.U., Urbandtke, H.K.: Relativity, Groups, Particles. Springer, Wien (2001)

    MATH  Book  Google Scholar 

  43. 43.

    Bowmeester, D., et al.: Nature 390, 575–579 (1996)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Günter Nimtz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nimtz, G. Tunneling Confronts Special Relativity. Found Phys 41, 1193–1199 (2011). https://doi.org/10.1007/s10701-011-9539-2

Download citation

Keywords

  • Special relativity
  • Tunneling
  • Faster than light
  • Superluminal signal velocity