Skip to main content

Less is Different: Emergence and Reduction Reconciled


This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.

In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each of them a model or a framework for modelling, from well-established mathematics or physics.

I take emergence as behaviour that is novel and robust relative to some comparison class. I take reduction as, essentially, deduction. The main idea of my first rebuttal will be to perform the deduction after taking a limit of some parameter. Thus my first main claim will be that in my four examples (and many others), we can deduce a novel and robust behaviour, by taking the limit N→∞ of a parameter N.

But on the other hand, this does not show that the N=∞ limit is “physically real”, as some authors have alleged. For my second main claim is that in these same examples, there is a weaker, yet still vivid, novel and robust behaviour that occurs before we get to the limit, i.e. for finite N. And it is this weaker behaviour which is physically real.

My examples are: the method of arbitrary functions (in probability theory); fractals (in geometry); superselection for infinite systems (in quantum theory); and phase transitions for infinite systems (in statistical mechanics).

This is a preview of subscription content, access via your institution.


  1. 1.

    Avnir, D., Biham, O., et al.: Is the geometry of nature fractal? Science 279, 39–40 (1998)

    ADS  Article  MATH  Google Scholar 

  2. 2.

    Anderson, P.: More is different. Science 177, 393–396 (1972); reprinted in Bedau and Humphreys (eds.): Emergence: Contemporary Readings in Philosophy and Science. MIT Press/Bradford Books, Cambridge (2008)

    ADS  Article  Google Scholar 

  3. 3.

    Bangu, S.: Understanding thermodynamic singularities: phase transitions, data and phenomena. Philos. Sci. 76, 488–505 (2009)

    Article  Google Scholar 

  4. 4.

    Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988)

    MATH  Google Scholar 

  5. 5.

    Barrenblatt, G.: Scaling, Self-similarity and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. 6.

    Batterman, R.: The Devil in the Details. Oxford University Press, London (2002)

    MATH  Google Scholar 

  7. 7.

    Batterman, R.: Critical phenomena and breaking drops: infinite idealizations in physics. Stud. Hist. Philos. Mod. Phys. 36B, 225–244 (2005)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Batterman, R.: Hydrodynamic vs. molecular dynamics: intertheory relations in condensed matters physics. Philos. Sci. 73, 888–904 (2006)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Batterman, R.: Emergence, singularities, and symmetry breaking. Pittsburgh arXive (2009)

  10. 10.

    Batterman, R.: On the explanatory role of mathematics in empirical science. Br. J. Philos. Sci. 61, 1–25 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Belot, G.: Whose Devil? Which Details? Philos. Sci. 72, 128–153 (2005); a fuller version is available at:

    MathSciNet  Article  Google Scholar 

  12. 12.

    Berry, M.: Asymptotics, singularities and the reduction of theories. In: Prawitz, D., Skyrms, B., Westerdahl, D. (eds.) Logic, Methodology and Philosophy of Science IX: Proceedings of the Ninth International Congress of Logic, Methodology and Philosophy of Science, Uppsala, Sweden 1991, pp. 597–607. Elsevier, Amsterdam (1994)

    Google Scholar 

  13. 13.

    Bogen, J., Woodward, J.: Saving the phenomena. Philos. Rev. 97, 303–352 (1988)

    Article  Google Scholar 

  14. 14.

    Bouatta, N., Butterfield, J.: Emergence and reduction combined in phase transitions. In: Kouneiher, J. (ed.) Frontiers of Fundamental Physics, vol. 11, Proceedings of the Conference. American Institute of Physics (2011, forthcoming)

  15. 15.

    Brady, R., Ball, R.: Fractal growth of copper electrodeposits. Nature 309(5965), 225–229 (1984)

    ADS  Article  Google Scholar 

  16. 16.

    Butterfield, J.: Emergence, reduction and supervenience: a varied landscape. Found. Phys. (2010, this issue)

  17. 17.

    Callender, C.: Taking thermodynamics too seriously. Stud. Hist. Philos. Mod. Phys. 32B, 539–554 (2001)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge Lecture Notes in Physics, vol. 5. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  19. 19.

    Castaing, B., Gunaratne, G., et al.: Scaling of hard thermal turbulence in Rayleigh-Benard convection. J. Fluid Mech. 204, 1–30 (1989)

    ADS  Article  Google Scholar 

  20. 20.

    Cat, J.: The physicists’ debates on unification in physics at the end of the twentieth century. Hist. Stud. Phys. Biol. Sci. 28, 253–300 (1998)

    Google Scholar 

  21. 21.

    Chaikin, P., Lubensky, T.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  22. 22.

    Colyvan, M.: Probability and ecological complexity’: a review of Strevens (2003). Biol. Philos. 20, 869–879 (2005)

    Article  Google Scholar 

  23. 23.

    Diaconis, P.: Finite forms of de Finetti’s theorem on exchangeability. Synthese 36, 271–281 (1977)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Diaconis, P., Freedman, D.: De Finetti’s generalizations of exchangeability. In: Jeffrey, R. (ed.) Studies in Inductive Logic and Probability, vol. 2, pp. 233–249. University of California Press, Berkeley (1980)

    Google Scholar 

  25. 25.

    Diaconis, P., Holmes, S., Montgomery, R.: Dynamical bias in the coin toss. SIAM Rev. 49, 211–235 (2007)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  26. 26.

    Dixon, P., Wu, L., et al.: Scaling in the relaxation of supercooled liquids. Phys. Rev. Lett. 65, 1108–1111 (1990)

    ADS  Article  Google Scholar 

  27. 27.

    Emch, G.: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley, New York (1972)

    MATH  Google Scholar 

  28. 28.

    Emch, G.: Quantum statistical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics, Part B. The Handbook of the Philosophy of Science, pp. 1075–1182. North Holland, Amsterdam (2006)

    Google Scholar 

  29. 29.

    Emch, G., Liu, C.: The Logic of Thermo-statistical Physics. Springer, Berlin (2002)

    Google Scholar 

  30. 30.

    Engel, E.: A Road to Randomness in Physical Systems. Springer, Berlin (1992)

    MATH  Book  Google Scholar 

  31. 31.

    Falconer, K.: Fractal Geometry. Wiley, New York (2003)

    MATH  Book  Google Scholar 

  32. 32.

    Frigg, R., Hoefer, C.: Determinism and chance from a Humean perspective. In: Dieks, D., Gonzalez, W., Hartmann, S., Stadler, F., Uebel, T., Weber, M. (eds.) The Present Situation in the Philosophy of Science. Springer, Berlin (2010, forthcoming)

    Google Scholar 

  33. 33.

    Goldenfeld, N., Martin, O., Oono, Y.: Intermediate asymptotics and renormalization group theory. J. Sci. Comput. 4, 355–372 (1989)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Gross, D.: Microcanonical Thermodynamics; Phase Transitions in Small Systems. World Scientific, Singapore (2001)

    Book  Google Scholar 

  35. 35.

    Hadzibabic, Z., et al.: Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    Hastings, H., Sugihara, G.: Fractals: A User’s Guide for the Natural Sciences. Oxford University Press, London (1993)

    Google Scholar 

  37. 37.

    Hooker, C.: Asymptotics, reduction and emergence. Br. J. Philos. Sci. 55, 435–479 (2004)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Jeffrey, R.: Conditioning, kinematics and exchangeability. In: Skyrms, B., Harper, W. (eds.) Causation, Chance and Credence, vol. 1, pp. 221–255. Kluwer, Dordrecht (1988)

    Google Scholar 

  39. 39.

    Kadanoff, L.: More is the same: phase transitions and mean field theories. J. Stat. Phys. 137, 777–797 (2009); available at

    MathSciNet  ADS  MATH  Article  Google Scholar 

  40. 40.

    Kadanoff, L.: Theories of matter: infinities and renormalization. In: Batterman, R. (ed.) The Oxford Handbook of the Philosophy of Physics. Oxford University Press (2010, forthcoming); available at; and at

  41. 41.

    Kadanoff, L.: Relating theories via renormalization (2010a); available at

  42. 42.

    Keller, J.: The probability of heads. Am. Math. Mon. 93, 191–197 (1986)

    MATH  Article  Google Scholar 

  43. 43.

    Koenig, R., Renner, R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46, 012105 (2005); available at arXiv:quant-ph/0410229v1

    MathSciNet  Article  Google Scholar 

  44. 44.

    Koenig, R., Mitchison, G.: A most compendious and facile quantum de Finetti theorem. J. Math. Phys. (2007) 50, 012105; available at arXiv:quant-ph/0703210

    ADS  Article  Google Scholar 

  45. 45.

    Kritzer, P.: Sensitivity and Randomness: The Development of the Theory of Arbitrary Functions. Diplom thesis, University of Salzburg (2003)

  46. 46.

    Landsman, N.: Between classical and quantum. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics, Part A. The Handbook of the Philosophy of Science, pp. 417–554. North-Holland, Amsterdam (2006); available at arxiv:quant-ph/0506082 and at

    Google Scholar 

  47. 47.

    Lavis, D., Bell, G.: Statistical Mechanics of Lattice Systems 1; Closed Forms and Exact Solutions, 2nd enlarged edn. Springer, Berlin (1999)

    Google Scholar 

  48. 48.

    Lavis, D., Bell, G.: Statistical Mechanics of Lattice Systems. 2. Exact, Series and Renormalization Group Methods. Springer, Berlin (1999a)

    Google Scholar 

  49. 49.

    Le Bellac, M.: Quantum and Statistical Field Theory. Oxford University Press, London (1991) (translated by G. Barton)

    Google Scholar 

  50. 50.

    Liu, C.: Infinite systems in SM explanation: thermodynamic limit, renormalization (semi)-groups and irreversibility. Proc. Philos. Sci. 68, S325–S344 (2001)

    Google Scholar 

  51. 51.

    Liu, C., Emch, G.: Explaining quantum spontaneous symmetry breaking. Stud. Hist. Philos. Mod. Phys. 36, 137–164 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Mainwood, P.: Is More Different? Emergent Properties in Physics. D. Phil. dissertation, Oxford University (2006). At:

  53. 53.

    Mainwood, P.: Phase transitions in finite systems, unpublished MS (corresponds to Chapter 4 of Mainwood (2006)) (2006a). At:

  54. 54.

    Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  55. 55.

    Menon, T., Callender, C.: Going through a phase: philosophical questions raised by phase transitions. In: Batterman, R. (ed.) The Oxford Handbook of Philosophy of Physics. Oxford University Press (2011, forthcoming)

  56. 56.

    Myrvold, W.: Deterministic laws and epistemic chances. Unpublished manuscript (2011)

  57. 57.

    Nagel, E.: The Structure of Science: Problems in the Logic of Scientific Explanation. Harcourt, New York (1961)

    Google Scholar 

  58. 58.

    Nelson, E.: Radically Elementary Probability Theory. Annals of Mathematics Studies, vol. 117. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  59. 59.

    Peitgen, H.-O., Richter, P.: The Beauty of Fractals. Springer, Heidelberg (1986)

    MATH  Book  Google Scholar 

  60. 60.

    Poincaré, H.: Calcul de Probabilities. Gauthier-Villars, Paris (1896); page reference to 1912 edition

    Google Scholar 

  61. 61.

    Richardson, L.: The problem of contiguity: an appendix of statistics of deadly quarrels. Gen. Syst. Yearbook 6, 139–187 (1961)

    Google Scholar 

  62. 62.

    Renner, R.: Symmetry implies independence. Nat. Phys. 3, 645–649 (2007)

    Article  Google Scholar 

  63. 63.

    Rueger, A.: Physical emergence, diachronic and synchronic. Synthese 124, 297–322 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Rueger, A.: Functional reduction and emergence in the physical sciences. Synthese 151, 335–346 (2006)

    MathSciNet  Article  Google Scholar 

  65. 65.

    Ruelle, D.: Statistical Mechanics: Rigorous Results. Benjamin, Elmsford (1969)

    MATH  Google Scholar 

  66. 66.

    Sewell, G.: Quantum Theory of Collective Phenomena. Oxford University Press, London (1986)

    Google Scholar 

  67. 67.

    Sewell, G.: Quantum Mechanics and its Emergent Microphysics. Princeton University Press, Princeton (2002)

    Google Scholar 

  68. 68.

    Shenker, O.: Fractal geometry is not the geometry of nature. Stud. Hist. Philos. Sci. 25, 967–982 (1994)

    MathSciNet  Article  Google Scholar 

  69. 69.

    Simon, H.: Alternative views of complexity. In: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996); the Chapter is reprinted in Bedau and Humphreys (2008); page reference to the reprint

    Google Scholar 

  70. 70.

    Smith, P.: Explaining Chaos. Cambridge University Press, Cambridge (1998)

    MATH  Book  Google Scholar 

  71. 71.

    Sober, E.: Evolutionary theory and the reality of macro-probabilities. In: Eells, E., Fetzer, J. (eds.) The Place of Probability in Science. Boston Studies in the Philosophy of Science, vol. 284, pp. 133–161. Springer, Berlin (2010)

    Chapter  Google Scholar 

  72. 72.

    Stoppard, T.: Arcadia. Faber and Faber, London (1993)

    Google Scholar 

  73. 73.

    Strevens, M.: Bigger than Chaos: Understanding Complexity through Probability. Harvard University Press, Cambridge (2003)

    Google Scholar 

  74. 74.

    Thompson, C.: Mathematical Statistical Mechanics. Princeton University Press, Princeton (1972)

    MATH  Google Scholar 

  75. 75.

    von Plato, J.: The method of arbitrary functions. Br. J. Philos. Sci. 34, 37–47 (1983)

    MATH  Article  Google Scholar 

  76. 76.

    von Plato, J.: Creating Modern Probability. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  77. 77.

    Wayne, A.: Emergence and singular limits. Synthese (2009, forthcoming) available at

  78. 78.

    Weinberg, S.: Newtonianism, reductionism and the art of congressional testimony. Nature 330, 433–437 (1987); reprinted in Bedau and Humphreys (2008); page reference to the reprint; also reprinted in Weinberg, S. Facing Up: Science and its Cultural Adversaries, Harvard University Press, pp. 8–25

    ADS  Article  Google Scholar 

  79. 79.

    Werndl, C.: Review of Strevens (2003). Br. J. Philos. Sci. (2010, forthcoming)

  80. 80.

    Wimsatt, W.: Aggregativity: reductive heuristics for finding emergence. Philos. Sci. 64, S372–S384 (1997); reprinted in Bedau and Humphreys (2008); page reference to the reprint

    Article  Google Scholar 

  81. 81.

    Yeomans, J.: Statistical Mechanics of Phase Transitions. Oxford University Press, London (1992)

    Google Scholar 

  82. 82.

    Feynman, R.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Reading (1964)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Butterfield.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Butterfield, J. Less is Different: Emergence and Reduction Reconciled. Found Phys 41, 1065–1135 (2011).

Download citation


  • Emergence
  • Reduction
  • Asymptotics
  • Method of arbitrary functions
  • Fractals
  • Superselection
  • Phase transitions
  • Thermodynamic limit