Foundations of Physics

, Volume 41, Issue 2, pp 159–177 | Cite as

Pure Quantum Interpretations Are not Viable

  • I. SchmelzerEmail author


Pure interpretations of quantum theory, which throw away the classical part of the Copenhagen interpretation without adding new structure to its quantum part, are not viable. This is a consequence of a non-uniqueness result for the canonical operators.


Everett interpretation Ithaca interpretation Consistent histories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmelzer, I.: Why the Hamilton operator alone is not enough. Found. Phys. 39, 486–498 (2009). arXiv:0901.3262 zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991) zbMATHCrossRefGoogle Scholar
  3. 3.
    Bell, J.S.: Beables for quantum field theory. Phys. Rep. 137, 49–54 (1986) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85, 166–193 (1952) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    de Broglie, L.: La nouvelle dynamique des quanta, in Electrons et Photons: Rapports et Discussions du Cinquieme Conseil de Physique, ed. J. Bordet, Gauthier-Villars, Paris, pp. 105–132 (1928). English translation in: Bacciagaluppi, G., Valentini, A.: Quantum theory at the crossroads: reconsidering the 1927 Solvay Conference, Cambridge University Press. arXiv:quant-ph/0609184 (2006)
  6. 6.
    Brown, H.R.: Comment on Valentini “De Broglie-Bohm pilot-wave theory: many worlds in denial?” arXiv:0901.1278
  7. 7.
    Brown, H.R., Wallace, D.: Solving the measurement problem: de Broglie-Bohm loses out to Everett. Found. Phys. 35(4), 517 (2005). arXiv:quant-ph/0403094 zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Deutsch, D.: Comment on Lockwood. Br. J. Philos. Sci. 47, 222–228 (1996) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Ghirardi, G.C.: Collapse theories. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2002 edition), available online at, 2002
  11. 11.
    Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for micro and macro systems. Phys. Rev. D 34, 470–491 (1986) CrossRefMathSciNetADSzbMATHGoogle Scholar
  12. 12.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(12), 219–272 (1984) zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Griffiths, R.B.: Quantum mechanics without measurements. arXiv:quant-ph/0612065 (2006)
  14. 14.
    Kent, A.: Real world interpretations of quantum theory. arXiv:0708.3710 (2007)
  15. 15.
    Mermin, N.D.: The Ithaca interpretation of quantum mechanics. Pramana 51, 549–565 (1998). arXiv:quant-ph/9609013 CrossRefADSGoogle Scholar
  16. 16.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966) CrossRefADSGoogle Scholar
  17. 17.
    Saunders, S.: Time, decoherence and quantum mechanics. Synthese 102, 235–266 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schmelzer, I.: A condensed matter interpretation of sm fermions and gauge fields. Found. Phys. 39(1), 73 (2009). arXiv:0908.0591 zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Tegmark, M.: The mathematical universe. Found. Phys. 38, 101–150 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Valentini, A.: De Broglie-Bohm pilot-wave theory: many worlds in denial? In: [22]. arXiv:0811.0810
  21. 21.
    Brown, H.R.: Comment on Valentini “De Broglie-Bohm pilot-wave theory: many worlds in denial?” In: [22]. arXiv:0901.1278
  22. 22.
    Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Realism, Everett, and Quantum Mechanics. University Press, Oxford (2009) Google Scholar
  23. 23.
    Wallace, D.: Worlds in the Everett interpretation, studies in the history and philosophy of modern. Physics 33, 637–661 (2002). arXiv:quant-ph/0103092 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Weinberg, S.: Living in the multiverse. arXiv:hep-th/0511037v1
  25. 25.
    Zeh, H.D.: Why Bohms quantum theory? arXiv:quant-ph/9812059
  26. 26.
    An exchange of letters in Physics Today on “Quantum theory without observers”, February 1999.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations