Skip to main content

Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS


It has been shown that the orbits of motion for a wide class of non-relativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual by means of a conformal map. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence in this way with another Hamiltonian with conformally modified metric. Such a construction could account for part of the requirements of Bekenstein for achieving the MOND theory of Milgrom in the post-Newtonian limit. The constraints on the MOND theory imposed by the galactic rotation curves, through this correspondence, would then imply constraints on the structure of the world scalar field. We then use the fact that a Hamiltonian with vector gauge fields results, through such a conformal map, in a Kaluza-Klein type theory, and indicate how the TeVeS structure of Bekenstein and Saunders can be put into this framework. We exhibit a class of infinitesimal gauge transformations on the gauge fields \({\mathcal{U}}_{\mu}(x)\) which preserve the Bekenstein-Sanders condition \({\mathcal{U}}_{\mu}{\mathcal{U}}^{\mu}=-1\). The underlying quantum structure giving rise to these gauge fields is a Hilbert bundle, and the gauge transformations induce a non-commutative behavior to the fields, i.e. they become of Yang-Mills type. Working in the infinitesimal gauge neighborhood of the initial Abelian theory we show that in the Abelian limit the Yang-Mills field equations provide residual nonlinear terms which may avoid the caustic singularity found by Contaldi et al.

This is a preview of subscription content, access via your institution.


  1. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  2. Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 372, 588 (1941)

    MathSciNet  Google Scholar 

  3. Stueckelberg, E.C.G.: Helv. Phys. Acta 15, 23 (1942)

    MATH  MathSciNet  Google Scholar 

  4. Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1973)

    Google Scholar 

  5. Feynman, R.P.: Phys. Rev. 80, 4401 (1950)

    Article  MathSciNet  Google Scholar 

  6. Schwinger, J.S.: Phys. Rev. 82, 664 (1951)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  7. Oron, O., Horwitz, L.P.: Found. Phys. 31, 951 (2001)

    Article  MathSciNet  Google Scholar 

  8. Saad, D., Horwitz, L.P., Arshansky, R.I.: Found. Phys. 19, 1125 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  9. Shnerb, N., Horwitz, L.P.: Phys. Rev. A 48, 4068 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  10. Horwitz, L.P., Levitan, J., Lewkowicz, M., Shiffer, M., Zion, Y. Ben: Phys. Rev. Lett. 98, 234301 (2007)

    Article  ADS  Google Scholar 

  11. Bekenstein, J.D., Milgrom, M.: Astrophys. J. 286, 7 (1984)

    Article  ADS  Google Scholar 

  12. Bekenstein, J.D.: In: Coley A., Dyer C., Tupper T. (eds.) Second Canadian Conference on General Relativity and Relativistic Astrophysics. Singapore, World Scientific (1992)

    Google Scholar 

  13. Milgrom, M.: Astrophys. J. 270, 365, 371, 384 (1983)

    ADS  Google Scholar 

  14. Milgrom, M.: Ann. Phys. 229, 384 (1994)

    Article  ADS  Google Scholar 

  15. Milgrom, M.: Astrophys. J. 287, 571 (1984)

    Article  ADS  Google Scholar 

  16. Milgrom, M.: Astrophys. J. 302, 617 (1986)

    Article  ADS  Google Scholar 

  17. Sanders, R.H.: Astrophys. J. 480, 492 (1997)

    Article  ADS  Google Scholar 

  18. Bekenstein, J.D.: Phys. Rev. D 70, 083509 (2004)

    Article  ADS  Google Scholar 

  19. Bekenstein, J.D.: Modified gravity vs. dark matter: relativistic theory for MOND. In: 28th Johns Hopkins Workshop on Current Problems in Particle Theory, June 5–8, 2004. arXiv:astro-ph/0412652 (2005)

  20. Gershon, A., Horwitz, L.P.: Kaluza-Klein theory as a dynamics in a dual geometry J. Math. Phys. (2010, in print)

  21. Yang, C.N., Mills, R.L.: Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  22. Contaldi, C.R., Wiseman, T., Withers, B.: arXiv:0802.1215

  23. Contaldi, C.R., Wiseman, T., Withers, B.: Phys. Rev. D 78, 044034 (2008)

    Article  ADS  Google Scholar 

  24. Horwitz, L.P., Levitan, J., Yahalom, A., Lewkowicz, M.: Variational calculus for classical dynamics on dual manifolds (2010, in preparation)

  25. Calderon, E., Kupferman, R., Shnider, S., Horwitz, L.P., Calderon, E., Thesis, M.Sc.: Geometric formulation of classical dynamics and hamiltonian chaos, Hebrew University, Jerusalem, June 1 (2009, in preparation)

  26. Wesson, P.S.: Space-Time-Matter. Singapore, World Scientific (2007)

    MATH  Google Scholar 

  27. Wesson, P.S.: Five Dimensional Physics. Singapore, World Scientific (2006)

    MATH  Google Scholar 

  28. Liko, T.: Phys. Lett. B 617, 193 (2005)

    Article  ADS  Google Scholar 

  29. Mavromatos, N.E., Sakellariadou, M.: Phys. Lett. B 652, 97 (2007), for a study of the possibility of deriving the TeVeS theory from string theory

    Article  MathSciNet  ADS  Google Scholar 

  30. Kaluza, T.: Sitz. Oreuss. Akad. Wiss. 33, 966 (1921)

    Google Scholar 

  31. Sagi, E.: Phys. Rev. D 80, 044032 (2009), and arXiv:0905.4001 [gr-qc] 11 Jan. 2010

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Avi Gershon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horwitz, L., Gershon, A. & Schiffer, M. Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS. Found Phys 41, 141–157 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • General relativity
  • Dark matter and dark energy
  • Properties of galaxies
  • Relativistic astrophysics
  • Conformal modification of Einstein metric
  • MOND
  • TeVeS
  • Kaluza-Klein theory
  • Relativistic noncompact Yang-Mills theory with Lorentz group valued gauge transformations on a Hilbert bundle