Foundations of Physics

, Volume 41, Issue 3, pp 371–379 | Cite as

Consistent Histories in Quantum Cosmology

Article

Abstract

We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the universe is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes suggests that a “quantum bounce” is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a “quantum bounce” is thus not possible in these models.

Keywords

Quantum cosmology Minisuperspace Decoherence Consistent histories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiefer, C.: Quantum Gravity, 2nd edn. Oxford University Press, Oxford (2007) MATHCrossRefGoogle Scholar
  2. 2.
    Hartle, J.B.: In: Julia, B., Zinn-Justin, J. (eds.) Gravitation and Quantizations, Proceedings of the 1992 Les Houches Summer School. North-Holland, Amsterdam (1995). arXiv:gr-qc/9304006 Google Scholar
  3. 3.
    Hartle, J.B., Marolf, D.: Phys. Rev. D 56, 6247 (1997). 9703021 CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Halliwell, J.J., Thorwart, J.: Phys. Rev. D 65, 104009 (2002). arXiv:gr-qc/0201070 CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Craig, D.A., Hartle, J.B.: Phys. Rev. D 123525 (2004). arXiv:gr-qc/0309117v3.
  6. 6.
    Anastopoulos, C., Savvidou, K.: Class. Quantum Gravity 22, 1841 (2005). 0410131 MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Halliwell, J.J., Wallden, P.: Phys. Rev. D 73, 024011 (2006) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Halliwell, J.J.: 0909.2597 (2009)
  9. 9.
    Craig, D.A., Singh, P.: In preparation (2010) Google Scholar
  10. 10.
    Greenstein, G., Zajonc, A.G.: The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics, 2nd edn. Jones and Bartlett, Sudbury (2005) Google Scholar
  11. 11.
    Omnes, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994) MATHGoogle Scholar
  12. 12.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2008) Google Scholar
  13. 13.
    Craig, D.A., Singh, P.: In preparation (2010) Google Scholar
  14. 14.
    Ashtekar, A., Corichi, A., Singh, P.: Phys. Rev. D 77, 024046 (2008). 0710.3565 CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. D 74, 084003 (2006). gr-qc/0607039 CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Marolf, D.: gr-qc/9508015 (1995)
  17. 17.
    Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J., Thiemann, T.: J. Math. Phys. 36, 6456 (1995). gr-qc/9504018 MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. D 73, 124038 (2006). gr-qc/0604013 CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Rovelli, C.: Phys. Rev. D 65, 124013 (2002). gr-qc/0110035 CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Marolf, D.: Class. Quantum Gravity 12, 1199 (1995). gr-qc/9404053 MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Dittrich, B.: Class. Quantum Gravity 23, 6155 (2006). gr-qc/0507106 MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsLe Moyne CollegeSyracuseUSA
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations