Individuation in Quantum Mechanics

Abstract

It has been claimed that the Principle of the Identity of Indiscernibles (PII) is incompatible with quantum mechanics, considered as a complete theory. Van Fraassen has argued specifically that a conflict between the two arises due to the requirements of Bose-Einstein statistics when imposed on two-particle quantum states. It is shown here that this apparent contradiction of the PII with quantum mechanics can be removed by the introduction of a natural criterion of individuality.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    French, S.: Identity and individuality in quantum theory. The Stanford Encyclopedia of Philosophy, E.N. Zalta (Ed.), http://plato.stanford.edu/entries/qt-idind/ (2006)

  2. 2.

    van Fraassen, B.: The problem of indistinguishable particles. In: Cushing, J.T., et al. (eds.) Science and Reality, p. 153. University of Notre Dame Press, Notre Dame (1984)

    Google Scholar 

  3. 3.

    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    MATH  Article  ADS  Google Scholar 

  4. 4.

    Born, M.: In: Born, I. (ed.) The Born-Einstein Letters 1916–1955, p. 162. Macmillan & Co., London (2005)

    Google Scholar 

  5. 5.

    Forrest, P.: The identity of indiscernibles. The Stanford Encyclopedia of Philosophy, E.N. Zalta (Ed.), http://plato.stanford.edu/entries/identity-indiscernible/ (2006)

  6. 6.

    Jaeger, G.S., Sarkar, S.: Coherence, entanglement, and reductionist explanation in quantum physics. In: Ashtekar, A., et al. (eds.) Revisiting the Foundations of Relativistic Physics, p. 52. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  7. 7.

    Yang, C.-Y.: AAPPS Bull. 19, 56 (2009)

    Google Scholar 

  8. 8.

    Johansson, L.-G.: Interpreting Quantum Mechanics. Ashgate, Burlington (2007)

    Google Scholar 

  9. 9.

    Schrödinger, E.: Naturwissenschaften 23, 807–823 (1935) [J.D. Trimmer (transl.), Proc. Am. Philos. Soc. 124, 323 (1980)]

    Article  ADS  Google Scholar 

  10. 10.

    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1958), Sect. 3

    Google Scholar 

  11. 11.

    Jaeger, G.S.: New quantum mechanical results in interferometry. Ph.D. Thesis, Boston University, UMI; Ann Arbor (1995), Chap. 4

  12. 12.

    Arndt, M., et al.: Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  13. 13.

    Jaeger, G.S., Shimony, A., Vaidman, L.: Phys. Rev. A 54, 51 (1995)

    Google Scholar 

  14. 14.

    Seevinck, M.P.: Stud. Hist. Philos. Mod. Phys. 35, 693 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregg Jaeger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jaeger, G. Individuation in Quantum Mechanics. Found Phys 41, 299–304 (2011). https://doi.org/10.1007/s10701-009-9382-x

Download citation

  • Entanglement
  • Quantum systems
  • Local realism