Foundations of Physics

, Volume 41, Issue 3, pp 299–304 | Cite as

Individuation in Quantum Mechanics

  • Gregg Jaeger


It has been claimed that the Principle of the Identity of Indiscernibles (PII) is incompatible with quantum mechanics, considered as a complete theory. Van Fraassen has argued specifically that a conflict between the two arises due to the requirements of Bose-Einstein statistics when imposed on two-particle quantum states. It is shown here that this apparent contradiction of the PII with quantum mechanics can be removed by the introduction of a natural criterion of individuality.

Entanglement Quantum systems Local realism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    French, S.: Identity and individuality in quantum theory. The Stanford Encyclopedia of Philosophy, E.N. Zalta (Ed.), (2006)
  2. 2.
    van Fraassen, B.: The problem of indistinguishable particles. In: Cushing, J.T., et al. (eds.) Science and Reality, p. 153. University of Notre Dame Press, Notre Dame (1984) Google Scholar
  3. 3.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Born, M.: In: Born, I. (ed.) The Born-Einstein Letters 1916–1955, p. 162. Macmillan & Co., London (2005) Google Scholar
  5. 5.
    Forrest, P.: The identity of indiscernibles. The Stanford Encyclopedia of Philosophy, E.N. Zalta (Ed.), (2006)
  6. 6.
    Jaeger, G.S., Sarkar, S.: Coherence, entanglement, and reductionist explanation in quantum physics. In: Ashtekar, A., et al. (eds.) Revisiting the Foundations of Relativistic Physics, p. 52. Kluwer Academic, Dordrecht (2003) Google Scholar
  7. 7.
    Yang, C.-Y.: AAPPS Bull. 19, 56 (2009) Google Scholar
  8. 8.
    Johansson, L.-G.: Interpreting Quantum Mechanics. Ashgate, Burlington (2007) zbMATHGoogle Scholar
  9. 9.
    Schrödinger, E.: Naturwissenschaften 23, 807–823 (1935) [J.D. Trimmer (transl.), Proc. Am. Philos. Soc. 124, 323 (1980)] CrossRefADSGoogle Scholar
  10. 10.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1958), Sect. 3 zbMATHGoogle Scholar
  11. 11.
    Jaeger, G.S.: New quantum mechanical results in interferometry. Ph.D. Thesis, Boston University, UMI; Ann Arbor (1995), Chap. 4 Google Scholar
  12. 12.
    Arndt, M., et al.: Nature 401, 680 (1999) CrossRefADSGoogle Scholar
  13. 13.
    Jaeger, G.S., Shimony, A., Vaidman, L.: Phys. Rev. A 54, 51 (1995) Google Scholar
  14. 14.
    Seevinck, M.P.: Stud. Hist. Philos. Mod. Phys. 35, 693 (2004) CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Quantum Communication and Measurement Laboratory, Department of Electrical and Computer Engineering and Division of Natural Sciences and MathematicsBoston UniversityBostonUSA

Personalised recommendations