Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics

Abstract

Manifestly covariant quantum theory with invariant evolution parameter is a parametrized relativistic dynamical theory. The study of parameterized relativistic dynamics (PRD) helps us understand the consequences of changing key assumptions of quantum field theory (QFT). QFT has been very successful at explaining physical observations and is the basis of the conventional paradigm, which includes the Standard Model of electroweak and strong interactions. Despite its record of success, some phenomena are anomalies that may require a modification of the Standard Model. The anomalies include neutrino oscillations, non-locality, and gravity.

The two key QFT assumptions that are altered in PRD are the following: fields depend on space and time; and interactions between fields are local. Locality and non-locality refer to the correlation of particles with space-like separation. A local theory does not allow the existence of greater than light speed correlations, while a non-local theory does. PRD is a non-local theory that allows fields to depend on space, time and an invariant evolution parameter. A formulation of PRD is presented together with applications that can be directly compared to results from the conventional paradigm.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aghassi, J.J., Roman, P., Santilli, R.M.: Phys. Rev. D 1, 2753 (1970)

    Article  ADS  Google Scholar 

  2. 2.

    Amsler, C., et al., Particle Data Group: Phys. Lett. B 667, 1 (2008). http://pdglive.lbl.gov/listings1.brl?quickin=Y accessed 5 October 2008

    Article  ADS  Google Scholar 

  3. 3.

    Aparicio, J.P., Gaioli, F.H., Garcia Alvarez, E.T.: Phys. Rev. 51, 96 (1995)

    Article  ADS  Google Scholar 

  4. 4.

    Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  5. 5.

    Bell, J.S.: Physica 1, 195 (1964)

    Google Scholar 

  6. 6.

    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  7. 7.

    Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  8. 8.

    Bohm, D.: Phys. Rev. 89, 458 (1953)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  9. 9.

    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    Google Scholar 

  10. 10.

    Droz-Vincent, P.: Found. Phys. 25, 67 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. 11.

    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    MATH  Article  ADS  Google Scholar 

  12. 12.

    Enatsu, H.: Prog. Theor. Phys. 30, 236 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  13. 13.

    Enatsu, H.: Nuovo Cimento A 95, 269 (1986)

    Article  ADS  Google Scholar 

  14. 14.

    Fanchi, J.R.: Phys. Rev. D 20, 3108 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  15. 15.

    Fanchi, J.R.: Phys. Rev. A 34, 1677 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    Fanchi, J.R.: Parametrized Relativistic Quantum Theory. Kluwer, Amsterdam (1993)

    Google Scholar 

  17. 17.

    Fanchi, J.R.: Found. Phys. 23, 487 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  18. 18.

    Fanchi, J.R.: Found. Phys. 28, 1521 (1998)

    Article  Google Scholar 

  19. 19.

    Fanchi, J.R.: Found. Phys. 30, 1161 (2000)

    Article  MathSciNet  Google Scholar 

  20. 20.

    Fanchi, J.R.: In: Reimer, A. (ed.) Horizons in World Physics, vol. 240, pp. 117–159. Nova Science, Hauppauge (2003)

    Google Scholar 

  21. 21.

    Fanchi, J.R.: Found. Phys. 33, 1189 (2003)

    Article  Google Scholar 

  22. 22.

    Fanchi, J.R., Collins, R.E.: Found. Phys. 8, 851 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  23. 23.

    Collins, R.E., Fanchi, J.R.: Nuovo Cimento A 48, 314 (1978)

    Article  ADS  Google Scholar 

  24. 24.

    Feynman, R.P.: Rev. Mod. Phys. 20, 367 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  25. 25.

    Feynman, R.P.: Phys. Rev. 80, 440 (1950)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  26. 26.

    Feynman, R.P.: Phys. Rev. 84, 108 (1951)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  27. 27.

    Fock, V.A.: Phys. Z. Sowjetunion 12, 404 (1937)

    Google Scholar 

  28. 28.

    Fröhner, F.H.: Z. Naturforsch. 53a, 637 (1998)

    Google Scholar 

  29. 29.

    Hannibal, L.: Found. Phys. 8, 309 (1995)

    Article  Google Scholar 

  30. 30.

    Horwitz, L.P.: Phys. Lett. A 355, 1 (2006)

    Article  ADS  Google Scholar 

  31. 31.

    Horwitz, L.P.: Found. Phys. 37, 734 (2007)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  32. 32.

    Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1973)

    Google Scholar 

  33. 33.

    Horwitz, L.P., Rabin, Y.: Lett. Nuovo Cimento 17, 501 (1976)

    Article  Google Scholar 

  34. 34.

    Johnson, J.E.: Phys. Rev. 181, 1755 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  35. 35.

    Kubo, R.: Nuovo Cimento A 85, 293 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  36. 36.

    Kuhn, T.: The Structure of Scientific Revolutions, 2nd edn. University of Chicago Press, Chicago (1970)

    Google Scholar 

  37. 37.

    Kyprianidis, A.: Phys. Rep. 155, 1 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  38. 38.

    Land, M., Horwitz, L.P.: Found. Phys. 31, 967 (2001)

    Article  MathSciNet  Google Scholar 

  39. 39.

    Lindner, F., et al.: Phys. Rev. Lett. 95, 040401 (2005)

    Article  ADS  Google Scholar 

  40. 40.

    Mehra, J.: The Beat of a Different Drum. Clarendon, Oxford (1994)

    Google Scholar 

  41. 41.

    Nambu, Y.: Prog. Theor. Phys. 5, 82 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  42. 42.

    Pavsic, M.: Found. Phys. 21, 1005 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  43. 43.

    Pavsic, M.: Nuovo Cimento A 104, 1337 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  44. 44.

    Pavsic, M.: The Landscape of Theoretical Physics: A Global View. Kluwer, Amsterdam (2001)

    Google Scholar 

  45. 45.

    Santilli, R.M.: Isodual Theory of Antimatter. Springer, Dordrecht (2006)

    Google Scholar 

  46. 46.

    Schweber, S.S.: Rev. Mod. Phys. 58, 449 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  47. 47.

    Shnerb, N., Horwitz, L.P.: Phys. Rev. A 48, 4068 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  48. 48.

    Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 588 (1941)

    MATH  MathSciNet  Google Scholar 

  49. 49.

    Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 322 (1941)

    MathSciNet  Google Scholar 

  50. 50.

    Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 23 (1942)

    MathSciNet  Google Scholar 

  51. 51.

    Tonomura, A.: Electron Holography. Springer, New York (1993)

    Google Scholar 

  52. 52.

    Trump, M.A., Schieve, W.C.: Classical Relativistic Many-Body Dynamics. Kluwer, Amsterdam (1999)

    Google Scholar 

  53. 53.

    Weinberg, S.: Quantum Theory of Fields, Vol. I Foundations. Cambridge University Press, New York (1995)

    Google Scholar 

  54. 54.

    Weinberg, S.: Quantum Theory of Fields, Vol. II Modern Applications. Cambridge University Press, New York (1996)

    Google Scholar 

  55. 55.

    Weinberg, S.: Quantum Theory of Fields, Vol. III Supersymmetry. Cambridge University Press, New York (2000)

    Google Scholar 

  56. 56.

    Wilczek, F.: Quantum Field Theory. Rev. Mod. Phys. 71, S85–S95 (1999). arXiv:hep-th/9803075v2 accessed 5 October 2008

    Article  Google Scholar 

  57. 57.

    Wollenhaupt, M., et al.: Phys. Rev. Lett. 89, 1730011 (2002)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John R. Fanchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fanchi, J.R. Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics. Found Phys 41, 4–32 (2011). https://doi.org/10.1007/s10701-009-9371-0

Download citation

  • Relativistic dynamics
  • Manifestly covariant quantum theory
  • Neutrino oscillation
  • Interference in time
  • EPR experiment
  • Action at a distance
  • Non-locality
  • Stueckelberg