Zitterbewegung in Quantum Mechanics


The possibility that zitterbewegung opens a window to particle substructure in quantum mechanics is explored by constructing a particle model with structural features inherent in the Dirac equation. This paper develops a self-contained dynamical model of the electron as a lightlike particle with helical zitterbewegung and electromagnetic interactions. The model admits periodic solutions with quantized energy, and the correct magnetic moment is generated by charge circulation. It attributes to the electron an electric dipole moment rotating with ultrahigh frequency, and the possibility of observing this directly as a resonance in electron channeling is analyzed in detail. Correspondence with the Dirac equation is discussed. A modification of the Dirac equation is suggested to incorporate the rotating dipole moment.

This is a preview of subscription content, log in to check access.


  1. 1.

    Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003)

    Article  ADS  Google Scholar 

  2. 2.

    Hestenes, D.: Mysteries and insights of Dirac theory. Ann. Fond. Louis Broglie 28, 390–408 (2003)

    MathSciNet  Google Scholar 

  3. 3.

    Hestenes, D.: Real Dirac theory. In: The Theory of the Electron. Advances in Applied Clifford Algebras, vol. 7, pp. 97–144. UNAM, Mexico (1997). Unfortunately, the published text is marred by annoying font substitutions

    Google Scholar 

  4. 4.

    Bender, D., et al.: Tests of QED at 29 GeV center-of-mass energy. Phys. Rev. D 30, 515 (1984)

    Article  ADS  Google Scholar 

  5. 5.

    Bohm, D., Hiley, B.: The Undivided Universe, an Ontological Interpretation of Quantum Theory, 2nd edn. Routledge, London (1993), p. 220

    Google Scholar 

  6. 6.

    Schroedinger, E.: Über die kräftfreie bewegung in der relativistischen quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24(418) (1930)

  7. 7.

    Frenkel, J.: Die electrodynamik des rotierenden electrons. Z. Phys. 36, 243–262 (1926)

    ADS  Google Scholar 

  8. 8.

    Thomas, L.H.: Kinematics of an electron with an axis. Philos. Mag. 3, 1–22 (1927)

    Google Scholar 

  9. 9.

    Mathisson, M.: Neue mechanik materieller systeme. Acta Phys. Pol. 6, 163–200 (1937)

    MATH  Google Scholar 

  10. 10.

    Weyssenhoff, J.: On two relativistic models of Dirac’s electron. Acta Phys. Pol. 9, 47–53 (1947)

    Google Scholar 

  11. 11.

    Corben, H.: Classical and Quantum Theory of Spinning Particles, 2nd edn. Holden-Day, San Francisco (1948)

    Google Scholar 

  12. 12.

    Gürsey, F.: Relativistic kinematics of a classical point particle in spinor form. Nuovo Cimento 5, 785–809 (1957)

    Google Scholar 

  13. 13.

    Rivas, M.: Kinematical Theory of Spinning Particles. Kluwer, Dordrecht (2001)

    Google Scholar 

  14. 14.

    Bargman, V., Michel, L., Telegdi, V.: Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435–437 (1959)

    Article  ADS  Google Scholar 

  15. 15.

    Costa de Beauregard, O.: Noncollinearity of velocity and momentum of spinning particles. Found. Phys. 2, 111–126 (1972)

    Article  ADS  Google Scholar 

  16. 16.

    Doran, C., Lasenby, A., Gull, S., Somaroo, S., Challinor, A.: Spacetime algebra and electron physics. Adv. Imaging Electron Phys. 95, 271 (1996)

    Google Scholar 

  17. 17.

    Rivas, M.: Is there a classical spin contribution to the tunnel effect? Phys. Lett. A 248, 279 (1998)

    Article  ADS  Google Scholar 

  18. 18.

    Weyssenhoff, J.: Relativistically invariant homogeneous canonical formalism with higher derivatives. Acta Phys. Pol. 11, 49–70 (1951)

    MATH  MathSciNet  Google Scholar 

  19. 19.

    Krüger, H.: The electron as a self-interacting lightlike point charge: Classification of lightlike curves in spacetime under the group of SO(1,3) motions. In: The Theory of the Electron. Advances in Applied Clifford Algebras, vol. 7, pp. 145–162. UNAM, Mexico (1997)

    Google Scholar 

  20. 20.

    Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  21. 21.

    Proca, A.: Mechanique du point. J. Phys. Radium 15, 15–72 (1954)

    Article  MathSciNet  Google Scholar 

  22. 22.

    Barut, A.O., Zanghi, N.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. 23.

    Gull, S.F.: Charged particles at potential steps. In: Hestenes, D., Weingartshafer, A. (eds.) The Electron, pp. 37–48. Kluwer, Dordrecht (1991)

    Google Scholar 

  24. 24.

    Lasenby, A., Doran, C., Gull, S.: A multivector derivative approach to Lagrangian field theory. Found. Phys. 23, 1295–1327 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  25. 25.

    Schwinberg, P., Van Dyck, R. Jr., Dehmelt, H.: Electron magnetic moment from geonium spectra: Early experiments and background concepts. Phys. Rev. D 34, 722–736 (1986)

    Article  ADS  Google Scholar 

  26. 26.

    Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys. 47, 399–415 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  27. 27.

    Yoshioka, D.: The Quantum Hall Effect. Springer, Berlin (2002)

    Google Scholar 

  28. 28.

    Bjorken, J., Drell, S.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    Google Scholar 

  29. 29.

    Gouanère, M., Spighel, M., Cue, N., Gaillard, M.J., Genre, R., Kirsh, R.G., Poizat, J.C., Remillieux, J., Catillon, P., Roussel, L.: Experimental observation compatible with the particle internal clock. Ann. Fond. Louis Broglie 30, 109–115 (2005)

    Google Scholar 

  30. 30.

    Gemmell, D.: Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129–227 (1974)

    Article  ADS  Google Scholar 

  31. 31.

    Lindhard, J.: Influence of crystal lattice on motion of energetic charged particles. Mat. Fys. Medd. Dan. Vid. Selsk. 34(14), 1–64 (1974)

    MathSciNet  Google Scholar 

  32. 32.

    Morse, P., Feshbach, H.: Methods of Theoretical Physics, vol. I. McGraw-Hill, New York (1953)

    Google Scholar 

  33. 33.

    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  34. 34.

    Landau, L., Lifshitz, E.: Mechanics. Pergamon, Oxford (1969) (p. 80)

    Google Scholar 

  35. 35.

    Hestenes, D.: Gauge gravity and electroweak theory. In: Jantzen, R., Kleinert, H., Ruffini, R. (eds.) Proceedings of the Eleventh Marcel Grossmann Meeting. World Scientific, Singapore (2007)

    Google Scholar 

  36. 36.

    Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  Google Scholar 

  37. 37.

    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1957), pp. 261–267

    Google Scholar 

  38. 38.

    Greiner, G.: Relativistic Quantum Mechanics, 4th edn. Springer, Berlin (1990), pp. 91–93, 233–236

    Google Scholar 

  39. 39.

    Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57, 98–105 (1998)

    Article  ADS  Google Scholar 

  40. 40.

    de Broglie, L.: Ondes et quanta. C. R. Math. 177, 507–510 (1923)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David Hestenes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hestenes, D. Zitterbewegung in Quantum Mechanics. Found Phys 40, 1 (2010). https://doi.org/10.1007/s10701-009-9360-3

Download citation


  • Zitterbewegung
  • Geometric algebra
  • Electron channeling
  • de Broglie frequency