Foundations of Physics

, Volume 40, Issue 9–10, pp 1597–1610 | Cite as

Physics and Causation

Article

Abstract

The paper makes a case for there being causation in the form of causal properties or causal structures in the domain of fundamental physics. That case is built in the first place on an interpretation of quantum theory in terms of state reductions so that there really are both entangled states and classical properties, GRW being the most elaborate physical proposal for such an interpretation. I then argue that the interpretation that goes back to Everett can also be read in a causal manner, the splitting of the world being conceivable as a causal process. Finally, I mention that the way in which general relativity theory conceives the metrical field opens up the way for a causal conception of the metrical properties as well.

Keywords

Causal properties Classical properties Direction of time Dispositions Entanglement Everett GRW Measurement problem Metaphysics of science Metrical field Physical structures Propensities Quantum mechanics Spontaneous localizations State reductions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Mod. Phys. B 34, 135–142 (2003) CrossRefGoogle Scholar
  2. 2.
    Albert, D.Z.: Time and Chance. Harvard University Press, Cambridge (2000) MATHGoogle Scholar
  3. 3.
    Albert, D.Z., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77, 195–213 (1988) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Albert, D.Z., Loewer, B.: Tails of Schrödinger’s cat. In: Clifton, R.K. (ed.) Perspectives on Quantum Reality, pp. 81–91. Kluwer, Dordrecht (1996) Google Scholar
  5. 5.
    Bartels, A.: Modern essentialism and the problem of individuation of spacetime points. Erkenntnis 45, 25–43 (1996) CrossRefGoogle Scholar
  6. 6.
    Bartels, A.: Dispositionen in Raumzeit-Theorien. In: Gethmann, C.F. (ed.) Lebenswelt und Wissenschaft. XXI. Deutscher Kongress für Philosophie. Kolloquien. Meiner, Hamburg (2009) Google Scholar
  7. 7.
    Bassi, A., Ghirardi, G.C.: More about dynamical reduction and the enumeration principle. Br. J. Philos. Sci. 50, 719–734 (1999) CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Bassi, A., Ghirardi, G.C.: Counting marbles: Reply to Clifton and Monton. Br. J. Philos. Sci. 52, 125–130 (2001) CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Bell, J.S.: Are there quantum jumps?. In: Kilmister, C.W. (ed.) Schrödinger. Centenary Celebration of a Polymath, pp. 41–52. Cambridge University Press, Cambridge (1987). Reprinted in J.S. Bell: Speakable and Unspeakable in Quantum Mechanics, pp. 201–212. Cambridge University Press, Cambridge (1987) CrossRefGoogle Scholar
  10. 10.
    Bird, A.: Nature’s Metaphysics. Laws and Properties. Oxford University Press, Oxford (2007) Google Scholar
  11. 11.
    Bird, A.: Structural properties revisited. In: Handfield, T. (ed.) Dispositions and Causes, pp. 215–241. Oxford University Press, Oxford (2009) Google Scholar
  12. 12.
    Butterfield, J.N.: Stochastic Einstein locality revisited. Br. J. Philos. Sci. 58, 805–867 (2007) CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Clifton, R.K., Monton, B.: Losing your marbles in wave function collapse theories. Br. J. Philos. Sci. 50, 697–717 (1999) CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Cushing, J.T., McMullin, E. (eds.): Philosophical Consequences of Quantum Theory. Reflections on Bell’s Theorem. University of Notre Dame Press, Notre Dame (1989) Google Scholar
  15. 15.
    d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, Menlo Park (1971) Google Scholar
  16. 16.
    Dorato, M.: Dispositions, relational properties, and the quantum world. In: Kistler, M., Gnassounou, B. (eds.) Dispositions and Causal Powers, pp. 249–270. Ashgate, Aldershot (2007) Google Scholar
  17. 17.
    Dorato, M., Esfeld, M.: GRW as an ontology of dispositions. Stud. Hist. Philos. Mod. Phys. (2009, forthcoming). Paper available at http://philsci-archive.pitt.edu/archive/00004870/
  18. 18.
    Earman, J.: Reassessing the prospects for a growing block model of the universe. Int. Stud. Philos. Sci. 22, 135–164 (2008) CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Esfeld, M.: Quantum entanglement and a metaphysics of relations. Stud. Hist. Philos. Mod. Phys. B 35, 601–617 (2004) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Esfeld, M.: The modal nature of structures in ontic structural realism. Int. Stud. Philos. Sci. 23, 179–194 (2009) CrossRefGoogle Scholar
  21. 21.
    Esfeld, M., Lam, V.: Moderate structural realism about space-time. Synthese 160, 27–46 (2008) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Everett, H.: Relative state’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). Reprinted in B.S. DeWitt and N. Graham (eds.): The Many-Worlds Interpretation of Quantum Mechanics. pp. 141–149. Princeton University Press, Princeton (1973) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    French, S., Ladyman, J.: Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese 136, 31–56 (2003) CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Frigg, R., Hoefer, C.: Probability in GRW theory. Stud. Hist. Philos. Mod. Phys. B 38, 371–389 (2007) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Frisch, M.: The most sacred tenet? Causal reasoning in physics. Br. J. Philos. Sci. 60, 459–474 (2009) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Frisch, M.: Causality and dispersion: A reply to John Norton. Br. J. Philos. Sci. 60, 487–495 (2009) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Ghirardi, G.C.: Sneaking a Look at God’s Cards. Unraveling the Mysteries of Quantum Mechanics. Princeton University Press, Princeton (2005). Translated by Gerald Malsbary MATHGoogle Scholar
  28. 28.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Gisin, N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52, 1657–1660 (1984) (and reply p. 1776) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Haag, R.: Local Quantum Physics. Springer, Berlin (1992) MATHGoogle Scholar
  31. 31.
    Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2004) MATHGoogle Scholar
  32. 32.
    Ladyman, J.: What is structural realism? Stud. Hist. Philos. Mod. Sci. 29, 409–424 (1998) CrossRefGoogle Scholar
  33. 33.
    Ladyman, J., Ross, D., Spurrett, D., Collier, J.: Every Thing Must Go. Metaphysics Naturalised. Oxford University Press, Oxford (2007) CrossRefGoogle Scholar
  34. 34.
    Lewis, D.: Humean supervenience debugged. Mind 103, 473–490 (1994). Reprinted in D. Lewis (1999): Papers in Metaphysics and Epistemology, pp. 224–247. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  35. 35.
    Lewis, P.: Quantum mechanics, orthogonality, and counting. Br. J. Philos. Sci. 48, 313–328 (1997) CrossRefMATHGoogle Scholar
  36. 36.
    Livanios, V.: Bird and the dispositional essentialist account of spatiotemporal relations. J. Gen. Philos. Sci. 39, 383–394 (2008) CrossRefGoogle Scholar
  37. 37.
    Lockwood, M.: Mind, Brain and the Quantum. The Compound ‘I’. Blackwell, Oxford (1989) Google Scholar
  38. 38.
    Maudlin, T.: Non-local correlations in quantum theory: some ways the trick might be done. In: Smith, Q., Craig, W.L. (eds.) Einstein, Relativity, and Absolute Simultaneity, pp. 186–209. Routledge, London (2008) Google Scholar
  39. 39.
    Mittelstaedt, P.: Is quantum mechanics a probabilistic theory? In: Cohen, R.S., Horne, M.A., Stachel, J. (eds.) Potentiality, Entanglement and Passion-at-a-Distance. Quantum Mechanical Studies for Abner Shimony, vol. 2, pp. 159–175. Kluwer, Dordrecht (1997) Google Scholar
  40. 40.
    Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  41. 41.
    Mittelstaedt, P.: The problem of decoherence and the EPR-paradox. In: Blanchard, P., Guilini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems, pp. 149–159. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  42. 42.
    Norton, J.: Causation as folk science. In: Price, H., Corry, R. (eds.) Causation, Physics, and the Constitution of Reality. Russell’s Republic Revisited, pp. 11–44. Oxford University Press, Oxford (2007) Google Scholar
  43. 43.
    Norton, J.: Do the causal principles of modern physics contradict causal anti-fundamentalism? In: Machamer, P., Wolters, G. (eds.) Thinking About Causes: From Greek Philosophy to Modern Physics, pp. 222–234. University of Pittsburgh Press, Pittsburgh (2007) Google Scholar
  44. 44.
    Norton, J.: Is there an independent principle of causality in physics? Br. J. Philos. Sci. 60, 475–486 (2009) CrossRefMathSciNetGoogle Scholar
  45. 45.
    Pearle, P.: Reduction of statevector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857–868 (1976) CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Popper, K.R.: The propensity interpretation of probability. Br. J. Philos. Sci. 10, 25–43 (1959) CrossRefGoogle Scholar
  47. 47.
    Redhead, M.L.G.: From Physics to Metaphysics. The Tarner Lectures. Cambridge University Press, Cambridge (1995) Google Scholar
  48. 48.
    Reid, D.D.: Introduction to causal sets: An alternative view of spacetime structure. Can. J. Phys. 79, 1–16 (2001) CrossRefADSGoogle Scholar
  49. 49.
    Rovelli, C.: Quantum gravity. In: Butterfield, J.N., Earman, J. (eds.) Handbook of the Philosophy of Science. Philosophy of Physics. Part B, pp. 1287–1329. Elsevier, Amsterdam (2007) Google Scholar
  50. 50.
    Russell, B.: On the notion of cause. Proc. Aristot. Soc. 13, 1–26 (1912) Google Scholar
  51. 51.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2004) CrossRefADSGoogle Scholar
  52. 52.
    Shoemaker, S.: Causality and properties. In: van Inwagen, P. (ed.) Time and Cause, pp. 109–135. Reidel, Dordrecht (1980). Reprinted in S. Shoemaker: Identity, Cause, and Mind. Philosophical Essays, pp. 206–233. Cambridge University Press, Cambridge (1984) Google Scholar
  53. 53.
    Sorkin, R.D.: Spacetime and causal sets. In: d’Olivo, J.C., Nahmad-Achar, E., Rosenbaum, M., Ryan, M.P., Urrutia, L.F., Zertuche, F. (eds.) Relativity and Gravitation: Classical and Quantum, pp. 150–173. World Scientific, Singapore (1991) Google Scholar
  54. 54.
    Strawson, P.F.: Individuals. An Essay in Descriptive Metaphysics. Routledge, London (1959) CrossRefGoogle Scholar
  55. 55.
    Suárez, M.: On quantum propensities: two arguments revisited. Erkenntnis 61, 1–16 (2004) CrossRefMathSciNetMATHGoogle Scholar
  56. 56.
    Suárez, M.: Quantum selections, propensities and the problem of measurement. Br. J. Philos. Sci. 55, 219–255 (2004) CrossRefMATHGoogle Scholar
  57. 57.
    Suárez, M.: Quantum propensities. Stud. Hist. Philos. Mod. Phys. B 38, 418–438 (2007) CrossRefGoogle Scholar
  58. 58.
    Tumulka, R.: A relativistic version of the Ghirardi-Rimini-Weber model. J. Stat. Phys. 125, 821–840 (2006) CrossRefADSGoogle Scholar
  59. 59.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics. Translated by R.T. Beyer. Princeton University Press, Princeton (1955) MATHGoogle Scholar
  60. 60.
    Wallace, D.: The interpretation of quantum mechanics. In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics. Ashgate, Aldershot (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of LausanneLausanneSwitzerland

Personalised recommendations