Advertisement

Foundations of Physics

, Volume 40, Issue 7, pp 765–775 | Cite as

The VIP Experimental Limit on the Pauli Exclusion Principle Violation by Electrons

  • S. Bartalucci
  • S. Bertolucci
  • M. Bragadireanu
  • M. Cargnelli
  • C. Curceanu (Petrascu)
  • S. Di Matteo
  • J.-P. Egger
  • C. Guaraldo
  • M. Iliescu
  • T. Ishiwatari
  • M. Laubenstein
  • J. Marton
  • E. Milotti
  • D. Pietreanu
  • T. Ponta
  • A. Romero Vidal
  • D. L. Sirghi
  • F. SirghiEmail author
  • L. Sperandio
  • O. Vazquez Doce
  • E. Widmann
  • J. Zmeskal
Article

Abstract

In this paper we describe an experimental test of the validity of the Pauli Exclusion Principle (for electrons) which is based on a straightforward idea put forward a few years ago by Ramberg and Snow (Phys. Lett. B 238:438, 1990). We perform a very accurate search of X-rays from the Pauli-forbidden atomic transitions of electrons in the already filled 1S shells of copper atoms. Although the experiment has a very simple structure, it poses deep conceptual and interpretational problems. Here we describe the experimental method and recent experimental results, which we interpret in the framework of quon theory. We also present future plans to upgrade the experimental apparatus using Silicon Drift Detectors.

Keywords

Spin-statistics Violation of the Pauli Exclusion Principle Atomic (forbidden) transitions X-ray detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940) zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Lüders, G., Zumino, B.: Connection between spin and statistics. Phys. Rev. 110, 1450–1453 (1958) zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bernabei, R., et al.: Search for non-Paulian transitions in 23Na and 127I. Phys. Lett. B 408, 439–444 (1997) CrossRefADSGoogle Scholar
  4. 4.
    Back, H.O., et al. (Borexino Collaboration): New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility. Eur. Phys. J. C 37, 421–431 (2004) CrossRefADSGoogle Scholar
  5. 5.
    Deilamian, K., Gillaspy, J.D., Kelleher, D.E.: Search for small violations of the symmetrization postulate in an excited state of helium. Phys. Rev. Lett. 74, 4787–4790 (1995) CrossRefADSGoogle Scholar
  6. 6.
    Javorsek II, D., et al.: New experimental test of the Pauli exclusion principle using accelerator mass spectrometry. Phys. Rev. Lett. 85, 2701–2704 (2000) CrossRefADSGoogle Scholar
  7. 7.
    Javorsek II, D., et al.: Testing the atomic structure of beryllium with AMS, Nucl. Instrum. Methods B 194, 78–89 (2002) CrossRefADSGoogle Scholar
  8. 8.
    Arnold, R., et al. (NEMO Collaboration): Testing the Pauli exclusion principle with the NEMO-2 detector. Nucl. Phys. B 87(Proc. Suppl.), 510 (2000) Google Scholar
  9. 9.
    Nolte, E., et al.: Accelerator mass spectrometry for tests of the Pauli exclusion principle and for detection of beta beta decay products. J. Phys. G: Nucl. Part. Phys. 17, S355 (1991) CrossRefADSGoogle Scholar
  10. 10.
    Tsipenyuk, Y., Barabash, A., Kornoukhov, V., Chapyzhnikov, B.: Experimental test of the possible violation of the Pauli exclusion principle by photo-activation analysis of carbon content in pure boron. Radiat. Phys. Chem. 51, 507–511 (1998) CrossRefADSGoogle Scholar
  11. 11.
    Ramberg, E., Snow, G.: Experimental limit on a small violation of the Pauli principle. Phys. Lett. B 238, 438–441 (1990) CrossRefADSGoogle Scholar
  12. 12.
    Gavrin, V.N., Ignatiev, A.Yu., Kuzmin, V.A.: Search for small violation of the Pauli principle. Phys. Lett. B 206, 786 (1987) Google Scholar
  13. 13.
    Gavrin, V.N., Ignatiev, A.Yu., Kuzmin, V.A.: Search for small violation of the Pauli principle. Yad. Fiz. 46, 786 (1987) Google Scholar
  14. 14.
    Ignatiev, A.Yu.: X rays test the Pauli exclusion principle. Radiat. Phys. Chem. 75, 2090–2096 (2006) CrossRefADSGoogle Scholar
  15. 15.
    The VIP proposal, http://www.lnf.infn.it/esperimenti/vip (2004)
  16. 16.
    Culhane, J.L.: Position sensitive detectors in X-ray astronomy. Nucl. Instrum. Methods A 310, 1–13 (1990) CrossRefADSGoogle Scholar
  17. 17.
    Egger, J.-P., Chatellard, D., Jeannet, E.: Progress in soft X-ray detection: the case of exotic hydrogen. Particle World 3, 139 (1993) Google Scholar
  18. 18.
    Fiorucci, G., et al.: CCDs as low-energy X-ray detectors: I. General description. Nucl. Instrum. Methods A 292, 141–146 (1990) CrossRefADSGoogle Scholar
  19. 19.
    Varidel, D., et al.: CCDs as low-energy X-ray detectors: II. Technical aspects. Nucl. Instrum. Methods A 292, 147–155 (1990) CrossRefADSGoogle Scholar
  20. 20.
    Kraft, R.P., et al.: Measuring the soft X-ray quantum efficiency of charge-coupled devices using continuum synchrotron radiation. Nucl. Instrum. Methods A 366, 192 (1995) CrossRefADSGoogle Scholar
  21. 21.
    Ishiwatari, T., et al.: Kaonic nitrogen X-ray transition yields in a gaseous target. Phys. Lett. B 593, 48–54 (2004) CrossRefADSGoogle Scholar
  22. 22.
    Beer, G., et al.: Measurement of the kaonic hydrogen X-ray spectrum. Phys. Rev. Lett. 94, 212302 (2005) CrossRefADSGoogle Scholar
  23. 23.
    Leon, M., Bethe, H.A.: Negative meson absorption in liquid hydrogen. Phys. Rev. 127, 636–647 (1962) CrossRefADSGoogle Scholar
  24. 24.
    Faifman, M.P., Men’shikov, L.I.: Cascade processes in muonic hydrogen. Hyperfine Interact. 138, 61–71 (2001) CrossRefADSGoogle Scholar
  25. 25.
    Markushin, V.E., Jensen, T.S.: Kinetics of atomic cascade in light exotic atoms. Hyperfine Interact. 138, 71–76 (2001), for recent reviews of the physics of atomic cascades in exotic atoms CrossRefADSGoogle Scholar
  26. 26.
    Di Matteo, S., Sperandio, L.: VIP Note IR-04, (2006) Google Scholar
  27. 27.
    CCD-55 from EEV (English Electric Valve), Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Google Scholar
  28. 28.
    Ishiwatari, T., et al.: New analysis method for CCD X-ray data. Nucl. Instrum. Methods Phys. Res. A 556, 509–515 (2006) CrossRefADSGoogle Scholar
  29. 29.
    Bartalucci, S., et al. (VIP Collaboration): New experimental limit on the Pauli exclusion principle violation by electrons. Phys. Lett. B 641, 18–22 (2006) CrossRefADSGoogle Scholar
  30. 30.
    Sperandio, L.: New experimental limit on the Pauli Exclusion Principle violation by electrons from the VIP experiment. PhD thesis at University “Tor Vergata”, Roma, 5 March 2008 Google Scholar
  31. 31.
    Govorkov, A.B.: Can the Pauli principle be deduced with local quantum field theory? Phys. Lett. A 137, 7–10 (1989) CrossRefADSGoogle Scholar
  32. 32.
    Greenberg, O.W.: Example of infinite statistics. Phys. Rev. Lett. 64, 705–708 (1990) zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Greenberg, O.W.: Particles with small violations of Fermi or Bose statistics. Phys. Rev. D 43, 4111–4120 (1991) CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Hilborn, R.C.: Connecting q-mutator theory to experimental tests of the spin-statistics connection. In: Hilborn, R.C., Tino, G.M. (eds.) Spin-Statistics Connection and Commutation Relations: Experimental Tests and Theoretical Implications. American Institute of Physics, New York (2000) Google Scholar
  35. 35.
    Hilborn, R.C.: Analysis of an atomic J=0 to J=1 two-photon transition as a test of the spin-statistics connection for photons. Phys. Rev. A 65, 0321041 (2002) CrossRefGoogle Scholar
  36. 36.
    Amado, R.D., Primakoff, H.: Comments on testing the Pauli principle. Phys. Rev. C 22, 1338–1340 (1980) CrossRefADSGoogle Scholar
  37. 37.
    Rahal, V., Campa, A.: Thermodynamical implications of a violation of the Pauli principle. Phys. Rev. A 38, 3728–3731 (1988) CrossRefADSGoogle Scholar
  38. 38.
    Goldhaber, M., Scharff-Goldhaber, G.: Identification of beta-rays with atomic electrons. Phys. Rev. 73, 1472–1473 (1948) CrossRefADSGoogle Scholar
  39. 39.
    Reines, F., Sobel, H.W.: Test of the Pauli Exclusion Principle for atomic electrons. Phys. Rev. Lett. 32, 954–954 (1974) CrossRefADSGoogle Scholar
  40. 40.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Curceanu, C., et al.: Precision measurements of kaonic atoms at DAΦNE and future perspectives. Eur. Phys. J. A 31, 537–539 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Bartalucci
    • 1
  • S. Bertolucci
    • 1
  • M. Bragadireanu
    • 3
  • M. Cargnelli
    • 2
  • C. Curceanu (Petrascu)
    • 1
  • S. Di Matteo
    • 1
  • J.-P. Egger
    • 4
  • C. Guaraldo
    • 1
  • M. Iliescu
    • 1
  • T. Ishiwatari
    • 2
  • M. Laubenstein
    • 6
  • J. Marton
    • 2
  • E. Milotti
    • 5
  • D. Pietreanu
    • 1
  • T. Ponta
    • 3
  • A. Romero Vidal
    • 1
  • D. L. Sirghi
    • 1
    • 3
  • F. Sirghi
    • 1
    • 3
    Email author
  • L. Sperandio
    • 1
  • O. Vazquez Doce
    • 1
  • E. Widmann
    • 2
  • J. Zmeskal
    • 2
  1. 1.Laboratori Nazionali di FrascatiINFNFrascati (Roma)Italy
  2. 2.“Stefan Meyer” Institute for Subatomic PhysicsViennaAustria
  3. 3.“Horia Hulubei” National Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania
  4. 4.Institut de PhysiqueUniversité de NeuchâtelNeuchâtelSwitzerland
  5. 5.Dipartimento di FisicaUniversità di Trieste and INFN–Sezione di TriesteTriesteItaly
  6. 6.Laboratori Nazionali del Gran SassoAssergi (AQ)Italy

Personalised recommendations