Brownian Motion of a Charged Particle in Electromagnetic Fluctuations at Finite Temperature

Abstract

The fluctuation-dissipation theorem is a central theorem in nonequilibrium statistical mechanics by which the evolution of velocity fluctuations of the Brownian particle under a fluctuating environment is intimately related to its dissipative behavior. This can be illuminated in particular by an example of Brownian motion in an ohmic environment where the dissipative effect can be accounted for by the first-order time derivative of the position. Here we explore the dynamics of the Brownian particle coupled to a supraohmic environment by considering the motion of a charged particle interacting with the electromagnetic fluctuations at finite temperature. We also derive particle’s equation of motion, the Langevin equation, by minimizing the corresponding stochastic effective action, which is obtained with the method of Feynman-Vernon influence functional. The fluctuation-dissipation theorem is established from first principles. The backreaction on the charge is known in terms of electromagnetic self-force given by a third-order time derivative of the position, leading to the supraohmic dynamics. This self-force can be argued to be insignificant throughout the evolution when the charge barely moves. The stochastic force arising from the supraohmic environment is found to have both positive and negative correlations, and it drives the charge into a fluctuating motion. Although positive force correlations give rise to the growth of the velocity dispersion initially, its growth slows down when correlation turns negative, and finally halts, thus leading to the saturation of the velocity dispersion. The saturation mechanism in a supraohmic environment is found to be distinctly different from that in an ohmic environment. The comparison is discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pathria, P.K.: Statistical Mechanics, 2nd edn. Butterworth-Heinemann, Oxford (1996)

    Google Scholar 

  2. 2.

    Bhattacharjee, J.K.: Statistical Physics: Equilibrium and Non Equilibrium Aspects. Allied Pub., Indianapolis (2001)

    Google Scholar 

  3. 3.

    Caldeira, A.O., Leggett, A.J.: Physica A 121, 587 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. 4.

    Caldeira, A.O., Leggett, A.J.: Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  5. 5.

    Leggett, A.J., et al.: Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  6. 6.

    Schwinger, J.: J. Math. Phys. 2, 407 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. 7.

    Keldysh, L.V.: Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  8. 8.

    Feynman, R., Vernon, F.: Ann. Phys. 24, 118 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  9. 9.

    Grabert, H., Schramm, P., Ingold, G.L.: Phys. Rep. 168, 115 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  10. 10.

    Hu, B.L., Paz, J.P., Zhang, Y.: Phys. Rev. D 45, 2843 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. 11.

    Hu, B.L., Paz, J.P., Zhang, Y.: Phys. Rev. D 47, 1576 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  12. 12.

    Johnson, P.R., Hu, B.L.: Found. Phys. 35, 1117 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. 13.

    Oron, O., Horwitz, L.P.: Relativistic Brownian motion in 3+1 dimensions. e-Print: math-ph/0312003

  14. 14.

    Unruh, W.G., Zurek, W.H.: Phys. Rev. D 40, 1071 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  15. 15.

    Hsiang, J.-T., Lee, D.-S.: Phys. Rev. D 73, 065022 (2006)

    Article  ADS  Google Scholar 

  16. 16.

    Hsiang, J.-T., Lee, D.-S., Wu, C.-H.: J. Korean Phys. Soc. 49, 742 (2006)

    Google Scholar 

  17. 17.

    Rohrlich, F.: Phys. Rev. E 77, 046609 (2008)

    Article  ADS  Google Scholar 

  18. 18.

    Rohrlich, F.: Classical Charged Particles, 3rd edn. World Scientific, Singapore (2007)

    Google Scholar 

  19. 19.

    Hsiang, J.-T., Wu, T.-H., Lee, D.-S.: Phys. Rev. D 77, 105021 (2008)

    Article  ADS  Google Scholar 

  20. 20.

    Hsiang, J.-T., Wu, T.-H., Lee, D.-S.: Stochastic dynamics of a point charge under electromagnetic squeezed vacuum fluctuations. arXiv:0809.4100 [quant-ph]

  21. 21.

    Yu, H.-W., Ford, L.H.: Phys. Rev. D 70, 065009 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  22. 22.

    Ford, L.H., Roman, T.A.: Phys. Rev. D 72, 105010 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. 23.

    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  24. 24.

    Gardiner, C.W., Zoller, P.: Quantum Noise, 2nd edn. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jen-Tsung Hsiang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsiang, JT., Wu, TH. & Lee, DS. Brownian Motion of a Charged Particle in Electromagnetic Fluctuations at Finite Temperature. Found Phys 41, 77–87 (2011). https://doi.org/10.1007/s10701-009-9333-6

Download citation

Keywords

  • Brownian motion
  • Supraohmic environment
  • Langevin equation
  • Negative correlation
  • Fluctuation-dissipation theorem
  • Non-equilibrium field theory