Two Mathematically Equivalent Versions of Maxwell’s Equations

Abstract

This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell’s equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends on the motion of the source. This approach allows us to account for radiation reaction without the Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any assumptions about the structure of the source. The theory provides a new invariance group which, in general, is a nonlinear and nonlocal representation of the Lorentz group. This approach also provides a natural (and unique) definition of simultaneity for all observers.

The corresponding particle theory is independent of particle number, noninvariant under time reversal (arrow of time), compatible with quantum mechanics and has a corresponding positive definite canonical Hamiltonian associated with the clock of the source.

We also provide a brief review of our work on the foundational aspects of the corresponding relativistic quantum theory. Here, we show that the standard square-root and Dirac equations are actually two distinct spin- \(\frac{1}{2}\) particle equations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Einstein, A.: Ann. Phys. (Leipzig) 17, 891 (1905)

    ADS  MATH  Google Scholar 

  2. 2.

    Bridgman, P.W.: A Sophisticate’s Primer of Relativity. Wesleyan University Press, Middletown (1962)

    Google Scholar 

  3. 3.

    Purcell, E.M.: Electricity and Magnetism, vol. II. McGraw-Hill, New York (1984)

    Google Scholar 

  4. 4.

    Miller, A.I.: Frontiers of Physics 1900–1911. Birkhäuser, Boston (1986)

    Google Scholar 

  5. 5.

    Einstein, A.: Ann. Phys. (Leipzig) 17, 919 (1905)

    Google Scholar 

  6. 6.

    Planck, M.: Phys. Z. 10, 825 (1909)

    Google Scholar 

  7. 7.

    Lorentz, L.V.: Philos. Mag. 34, 287 (1867)

    Google Scholar 

  8. 8.

    Hamdan, N., Hariri, A.K., López-Bonilla, J.: Hadron. J. 30, 513 (2007)

    MATH  Google Scholar 

  9. 9.

    Ritz, W.: Ann. Chim. Phys. 13, 145 (1908)

    MATH  Google Scholar 

  10. 10.

    Einstein, A.: Phys. Z. 10, 821 (1909)

    Google Scholar 

  11. 11.

    Schilpp, P.A. (ed.): Autobiographical Notes. Albert Einstein: Philosopher-Scientist, vol. 1. Open Court Press, Peru (1969)

    Google Scholar 

  12. 12.

    Brown, H.R.: Eur. J. Phys. 26, S85 (2005)

    MATH  Article  Google Scholar 

  13. 13.

    Wheeler, J.A., Feynman, R.P.: Rev. Mod. Phys. 21, 425 (1949)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  14. 14.

    Dirac, P.A.M.: Proc. R. Soc. Lond. A 167, 148 (1938)

    Article  ADS  Google Scholar 

  15. 15.

    Damour, T.: Ann. Phys. (Leipzig) 17(8), 619–630 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  16. 16.

    Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H.: The Principle of Relativity. Dover, New York (1952). W. Perret and G.B. Jeffery (translators, with additional notes by A. Sommerfeld)

    Google Scholar 

  17. 17.

    Walters, S.: In: Gonner, H., Renn, J., Ritter, J. (eds.) The Expanding Worlds of General Relativity. Einstein Studies, vol. 7, pp. 45–86. Birkhäuser, Boston (1999)

    Google Scholar 

  18. 18.

    Gill, T.L., Zachary, W.W., Lindesay, J.: Found. Phys. 31, 1299 (2001)

    Article  MathSciNet  Google Scholar 

  19. 19.

    Dresden, M.: In: Brown, L.M. (ed.) Renormalization: From Lorentz to Landau (and Beyond). Springer, New York (1993)

    Google Scholar 

  20. 20.

    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. II. Addison-Wesley, New York (1974)

    Google Scholar 

  21. 21.

    Pryce, M.H.L.: Proc. R. Soc. Lond. A 195, 400 (1948)

    Article  MathSciNet  Google Scholar 

  22. 22.

    Currie, D.G., Jordan, T.F., Sudarshan, E.C.G.: Rev. Mod. Phys. 35, 350 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  23. 23.

    Gill, T.L., Zachary, W.W., Lindesay, J.: Int. J. Theor. Phys. 37, 2573 (1998)

    MATH  Article  MathSciNet  Google Scholar 

  24. 24.

    Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1981)

    Google Scholar 

  25. 25.

    Arnol’d, V.I.: Mathematical Methods in Classical Mechanics. Springer, New York (1993)

    Google Scholar 

  26. 26.

    Penzias, A.A., Wilson, R.W.: Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  27. 27.

    Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, London (1993)

    Google Scholar 

  28. 28.

    Cohen, A.G., Glashow, S.L.: arXiv:hep-ph/0605036v1

  29. 29.

    Santilli, R.M.: Elements of Hadronic Mechanics, I: Mathematical Foundations. Ukraine Academy of Sciences, Kiev (1993)

    Google Scholar 

  30. 30.

    Feynman, R.P.: Phys. Rev. 74, 939 (1948)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  31. 31.

    Stueckelberg, E.C.G.: Helv. Phys. Acta 15, 23 (1942)

    MATH  MathSciNet  Google Scholar 

  32. 32.

    Paul, H.: Photonen: Experimente und ihre Deutung. Vieweg, Braunschweig (1993)

    Google Scholar 

  33. 33.

    Buenker, R.J.: J. Chem. Phys. 22, 124 (2003)

    Google Scholar 

  34. 34.

    Bargmann, V., Wigner, E.P.: Proc. Natl. Acad. Sci. 34, 211 (1948)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  35. 35.

    Schrödinger, E., Bass, L.: Proc. R. Soc. Lond. A 232, 1 (1938)

    Google Scholar 

  36. 36.

    Goldhaber, A., Nieto, M.: Rev. Mod. Phys. 43, 277 (1971)

    Article  ADS  Google Scholar 

  37. 37.

    Jackiw, R.: Comments Mod. Phys. A 1, 1 (1999)

    Google Scholar 

  38. 38.

    Feynman, R.P.: Quantum Electrodynamics. Benjamin, New York (1964)

    Google Scholar 

  39. 39.

    Akhiezer, A.I., Berestetskii, V.D.: Quantum Electrodynamics. Wiley-Interscience, New York (1965)

    Google Scholar 

  40. 40.

    Pound, R.V., Snider, J.L.: Phys. Rev. 140, B788 (1965)

    Article  ADS  Google Scholar 

  41. 41.

    Curtis, H.D.: Publ. Lick Obs. 13 (1918)

  42. 42.

    Pearson, T.J., Zensus, J.A.: In: Zensus, J.A., Pearson, T.J. (eds.) Superluminal Radio Sources. Cambridge University Press, London (1987)

    Google Scholar 

  43. 43.

    Zensus, J.A.: Ann. Rev. Astron. Astrophys. 35, 607 (1997)

    Article  ADS  Google Scholar 

  44. 44.

    Mirabel, I.F., Rodríguez, L.F.: Ann. Rev. Astron. Astrophys. 37, 409 (1999)

    Article  ADS  Google Scholar 

  45. 45.

    Rees, M.J.: Nature 211, 468 (1966)

    Article  ADS  Google Scholar 

  46. 46.

    De Rújula, A.: arXiv:hep-ph/0412094v1

  47. 47.

    Greisen, K.: Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  48. 48.

    Zatsepin, G.T., Kuzmin, V.A.: Sov. Phys. JETP. Lett. 4, 78 (1966) (Engl. Transl.)

    ADS  Google Scholar 

  49. 49.

    Takeda, M., et al.: Phys. Rev. Lett. 81, 1163 (1998)

    Article  ADS  Google Scholar 

  50. 50.

    Takeda, M., et al.: Astrophys. J. 522, 225 (1999)

    Article  ADS  Google Scholar 

  51. 51.

    Jui, C.H. (HiRes Collaboration): In: Proc. 27th International Cosmic Ray Conference 2001, Hamburg

  52. 52.

    Dar, A.: arXiv:0906.0973v1 (2009)

  53. 53.

    Payne-Gaposchkin, C., Haramundanis, K.: Introduction to Astronomy, 2nd edn. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  54. 54.

    Gill, T.L., Zachary, W.W.: J. Math. Phys. 43, 69–93 (2002)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  55. 55.

    Feynman, R.P.: Phys. Rev. 81, 108–128 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  56. 56.

    Dyson, F.J.: Phys. Rev. 75, 1736–1755 (1949)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  57. 57.

    Gill, T.L., Zachary, W.W.: J. Phys. A, Math. Gen. 38, 2479–2496 (2005); Corrigendum: Ibid. 39, 1537–1538 (2006)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  58. 58.

    Gill, T.L., Zachary, W.W., Alfred, M.: J. Phys. A, Math. Gen. 38, 6955–6976 (2005)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  59. 59.

    Afshar, S.S., Flores, E., McDonald, K.F., Knoesel, E.: Found. Phys. 37, 295–305 (2007)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  60. 60.

    Drozdov, I.V., Stahlhofen, A.A.: arXiv:0803.2596v1 (2008)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tepper L. Gill.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gill, T.L., Zachary, W.W. Two Mathematically Equivalent Versions of Maxwell’s Equations. Found Phys 41, 99–128 (2011). https://doi.org/10.1007/s10701-009-9331-8

Download citation

Keywords

  • Special relativity
  • Proper time
  • Radiation reaction