Skip to main content
Log in

Detection Model Based on Representation of Quantum Particles by Classical Random Fields: Born’s Rule and Beyond

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recently a new attempt to go beyond quantum mechanics (QM) was presented in the form of so called prequantum classical statistical field theory (PCSFT). Its main experimental prediction is violation of Born’s rule which provides only an approximative description of real probabilities. We expect that it will be possible to design numerous experiments demonstrating violation of Born’s rule. Moreover, recently the first experimental evidence of violation was found in the triple slit interference experiment, see Sinha, et al. (Foundations of Probability and Physics-5. American Institute of Physics, Ser. Conference Proceedings, vol. 1101, pp. 200–207, 2009). Although this experimental test was motivated by another prequantum model, it can be definitely considered as at least preliminary confirmation of the main prediction of PCSFT. In our approach quantum particles are just symbolic representations of “prequantum random fields,” e.g., “electron-field” or “neutron-field”; photon is associated with classical random electromagnetic field. Such prequantum fields fluctuate on time and space scales which are essentially finer than scales of QM, cf. ’t Hooft’s attempt to go beyond QM (see ’t Hooft arXiv:hep-th/0105105, 2001; arXiv:quant-ph/0212095, 2002; arXiv:quant-ph/0701097, 2007). In this paper we elaborate a detection model in the PCSFT-framework. In this model classical random fields (corresponding to “quantum particles”) interact with detectors inducing probabilities which match with Born’s rule only approximately. Thus QM arises from PCSFT as an approximative theory. New tests of violation of Born’s rule are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sinha, U., Couteau, C., Medendorp, Z., Söllner, I., Laflamme, R., Sorkin, R., Weihs, G.: Testing Born’s rule in quantum mechanics with a triple slit experiment. In: Accardi, L., Adenier, G., Fuchs, C., Jaeger, G., Khrennikov, A., Larsson, J.-A., Stenholm, S. (eds.) Foundations of Probability and Physics-5, Växjö, August, 2008. American Institute of Physics, Ser. Conference Proceedings, vol. 1101, pp. 200–207. Melville, NY (2009)

  2. ’t Hooft, G.: Quantum mechanics and determinism. arXiv:hep-th/0105105 (2001)

  3. ’t Hooft, G.: Determinism beneath quantum mechanics. arXiv:quant-ph/0212095 (2002)

  4. ’t Hooft, G.: The free-will postulate in quantum mechanics. arXiv:quant-ph/0701097 (2007)

  5. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  6. Khrennikov, A.: J. Russ. Laser Res. 28, 244–254 (2007)

    Article  Google Scholar 

  7. De Muynck, W.M.: Interpretations of quantum mechanics, and interpretations of violations of Bell’s inequality. In: Khrennikov, A. (ed.) Foundations of Probability and Physics, Växjö, November, 2000. Series PQ-QP: Quantum Probability and White Noise Analysis, vol. 13, pp. 95–104. World Scientific, Singapore (2001)

    Google Scholar 

  8. Andreev, V.A., Man’ko, V.I.: Theor. Math. Phys. 140, 1135–1145 (2004)

    Article  MathSciNet  Google Scholar 

  9. Khrennikov, A.: Theor. Math. Phys. 157(1), 1448–1460 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Broglie, L.: The Current Interpretation of Wave Mechanics. A Critical Study. Elsevier, Amsterdam (1964)

    Google Scholar 

  11. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  12. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    Google Scholar 

  13. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  14. De la Pena, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

    Google Scholar 

  15. Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 141–162. Plenum, New York (1980)

    Google Scholar 

  16. Nelson, E.: Quantum Fluctuation. Princeton Univ. Press, Princeton (1985)

    Google Scholar 

  17. Davidson, M.: J. Math. Phys. 20, 1865–1870 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. Davidson, M.: Stochastic models of quantum mechanics—a perspective. In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 106–119. Melville, NY (2007)

  19. Manko, V.I.: J. Russ. Laser Res. 17, 579–584 (1996)

    Article  Google Scholar 

  20. Manko, O.V., Manko, V.I.: J. Russ. Laser Res. 25, 477–492 (2004)

    Article  Google Scholar 

  21. Bracken, A.J.: Rep. Math. Phys. 57, 17–26 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Bracken, A.J., Wood, J.G.: Phys. Rev. A 73, 012104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Elze, T.: The attractor and the quantum states. arXiv:0806.3408 (2008)

  24. Khrennikov, A.: J. Phys. A: Math. Gen. 38, 9051–9073 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Khrennikov, A.: Phys. Lett. A 357, 171–176 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Khrennikov, A.: Nuovo Cimento B 121, 1005–1021 (2006)

    ADS  MathSciNet  Google Scholar 

  27. Khrennikov, A.: Found. Phys. Lett. 18, 637–650 (2006)

    Article  MathSciNet  Google Scholar 

  28. De Muynck, W.M.: Foundations of Quantum Mechanics, an Empiricists Approach. Kluwer, Dordrecht (2002)

    Google Scholar 

  29. D’Ariano, G.M.: Operational axioms for quantum mechanics. In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 79–105. Melville, NY (2007)

  30. Khrennikov, A.: Born’s rule from classical random fields. Phys. Lett. A 372(44), 6588–6592 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Haag, R.: Local Quantum Physics. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  32. Haag, R.: Questions in quantum physics: a personal view. arXiv:hep-th/0001006 (2000)

  33. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 81, 5039–5042 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Weihs, G.: A test of Bell’s inequality with spacelike separation. In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 250–262. Melville, NY (2007)

  35. Aspect, A.: Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons. PhD thesis No. 2674, Université de Paris-Sud, Centre D’Orsay (1983)

  36. Khrennikov, A. (ed.): Foundations of Probability and Physics. Series PQ-QP: Quantum Probability and White Noise Analysis, vol. 13. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  37. Khrennikov, A. (ed.): Quantum Theory: Reconsideration of Foundations. Ser. Math. Model, vol. 2. Växjö University Press, Växjö (2002). Electronic volume: http://www.vxu.se/msi/forskn/publications.html

    Google Scholar 

  38. Adenier, G., Khrennikov, A., Nieuwenhuizen, Th.M. (eds.): Quantum Theory: Reconsideration of Foundations-3. American Institute of Physics, Ser. Conference Proceedings, vol. 810. Melville, NY (2006)

  39. Adenier, G., Fuchs, C., Khrennikov, A. (eds.): Foundations of Probability and Physics-3. American Institute of Physics, Ser. Conference Proceedings, vol. 889. Melville, NY (2007)

  40. Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986)

    Article  ADS  Google Scholar 

  41. Grangier, P.: Etude expérimentale de propriétés non-classiques de la lumière: interférence à un seul photon. Université de Paris-Sud, Centre D’Orsay (1986)

  42. Marshall, T., Santos, E.: Comment on “Experimental evidence for a photon anticorrelation Effect on a beam splitter: a new light on single-photon interferences”. Europhys. Lett. 3, 293–296 (1987)

    Article  ADS  Google Scholar 

  43. Hardy, L.: Can classical wave theory explain the photon anticorrelation effect on a beam splitter? Europhys. Lett. 15, 591–595 (1991)

    Article  ADS  Google Scholar 

  44. Sorkin, R.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3127 (1994). arXiv:gr-qc/9401003

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Khrennikov, A.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  46. Khrennikov, A.: Interpretations of Probability, 2nd edn. (completed). De Gruyter, Berlin (2009)

    Book  MATH  Google Scholar 

  47. Siegel, A., Wiener, N.: Phys. Rev. 101, 429 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  48. Siegel, A., Wiener, N.: Phys. Rev. 91, 1551 (1953)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Siegel, A., Wiener, N.: Nuovo Cimento, Ser. X 2(4), 982 (1955)

    Article  MathSciNet  Google Scholar 

  50. Wiener, N., Siegel, A., Rankin, B., : Differential Space, Quantum Systems, and Prediction. MIT Press, Cambridge (1966)

    MATH  Google Scholar 

  51. Bohm, D., Bub, J.: Rev. Mod. Phys. 38(3), 453 (1966)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Bub, J.: Int. J. Theor. Phys. 2(2), 101 (1969)

    Article  MathSciNet  Google Scholar 

  53. Belinfante, F.J.: A Survey of Hidden-Variable Theories. Pergamen Press, Oxford (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A. Detection Model Based on Representation of Quantum Particles by Classical Random Fields: Born’s Rule and Beyond. Found Phys 39, 997–1022 (2009). https://doi.org/10.1007/s10701-009-9312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9312-y

Keywords

Navigation