Complete Hamiltonian Description of Wave-Like Features in Classical and Quantum Physics

Abstract

The analysis of the Helmholtz equation is shown to lead to an exact Hamiltonian system describing in terms of ray trajectories, for a stationary refractive medium, a very wide family of wave-like phenomena (including diffraction and interference) going much beyond the limits of the geometrical optics (“eikonal”) approximation, which is contained as a simple limiting case. Due to the fact, moreover, that the time independent Schrödinger equation is itself a Helmholtz-like equation, the same mathematics holding for a classical optical beam turns out to apply to a quantum particle beam moving in a stationary force field, and leads to a system of Hamiltonian equations providing exact and deterministic particle trajectories and dynamical laws, and containing the laws of Classical Mechanics in the eikonal limit.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    de Broglie, L.: Nature 118, 441 (1926)

    Article  ADS  Google Scholar 

  2. 2.

    de Broglie, L.: J. Phys. Radium 8, 225 (1927)

    Article  Google Scholar 

  3. 3.

    de Broglie, L.: Une Tentative d’Interprétation Causale et Non-Linéaire de la Mécanique Ondulatoire. Gauthier-Villars (1956)

  4. 4.

    Bohm, D.J.: Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  5. 5.

    Bohm, D.J.: Phys. Rev. 89, 458 (1953)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  6. 6.

    Goldstein, H.: Classical Mechanics. Addison Wesley (1965)

  7. 7.

    Airoldi, A., Orefice, A., Ramponi, G.: Il Nuovo Cimento D 6, 527 (1985)

    Article  ADS  Google Scholar 

  8. 8.

    Airoldi, A., Orefice, A., Ramponi, G.: Phys. Fluids B 11, 2143 (1989)

    Article  ADS  Google Scholar 

  9. 9.

    Messiah, A.: Mécanique Quantique. Dunod (1959)

  10. 10.

    Fowles, G.R.: Introduction to Modern Optics. Dover (1975)

  11. 11.

    Friberg, A.T., Jaakkola, T., Tuovinen, J.: IEEE Trans. Antennas Propag. 40, 984 (1992)

    Article  ADS  Google Scholar 

  12. 12.

    Philippidis, C., Dewdney, D., Hiley, B.J.: Il Nuovo Cimento B 52, 15 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. 13.

    Bohm, D.J., Hiley, B.J.: Found. Phys. 12, 1001 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. 14.

    Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  15. 15.

    Holland, P.R.: Ann. Phys. 315, 505 (2005)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  16. 16.

    Sanz, A.S., Borondo, F., Miret-Artès, S.: Phys. Rev. B 61, 7743 (2000)

    Article  ADS  Google Scholar 

  17. 17.

    Sanz, A.S., Borondo, F., Miret-Artès, S.: J. Chem. Phys. 120, 8794 (2004)

    Article  ADS  Google Scholar 

  18. 18.

    Sanz, A.S., Miret-Artès, S.: Chem. Phys. Lett. 445, 350 (2007)

    Article  ADS  Google Scholar 

  19. 19.

    Micha, D.A.: J. Chem. Phys. 78, 7138 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. 20.

    Cohen, J.M., Micha, D.A.: J. Chem. Phys. 98, 2023 (1993)

    Article  ADS  Google Scholar 

  21. 21.

    Nielsen, S., Kapral, R., Ciccotti, G.: J. Stat. Phys. 101, 225 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  22. 22.

    Markovic, N., Bäck, A.: J. Phys. Chem. A 108, 8765 (2004)

    Article  Google Scholar 

  23. 23.

    Nowak, S., Orefice, A.: Phys. Fluids B 5, 1945 (1993)

    Article  ADS  Google Scholar 

  24. 24.

    Nowak, S., Orefice, A.: Phys. Plasmas 1, 1242 (1994)

    Article  ADS  Google Scholar 

  25. 25.

    Orefice, A., Nowak, S.: Phys. Essays 10, 364 (1997)

    Article  Google Scholar 

  26. 26.

    Bohm, D.J.: Wholeness and the Implicate Order. Routledge & Kegan Paul (1980)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Orefice.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orefice, A., Giovanelli, R. & Ditto, D. Complete Hamiltonian Description of Wave-Like Features in Classical and Quantum Physics. Found Phys 39, 256 (2009). https://doi.org/10.1007/s10701-009-9280-2

Download citation

Keywords

  • Geometrical optics
  • Hamilton equations
  • Quantum foundations
  • Indeterminism