A Condensed Matter Interpretation of SM Fermions and Gauge Fields

Abstract

We present the bundle (Aff(3)Λ)(ℝ3), with a geometric Dirac equation on it, as a three-dimensional geometric interpretation of the SM fermions. Each (ℂΛ)(ℝ3) describes an electroweak doublet. The Dirac equation has a doubler-free staggered spatial discretization on the lattice space (Aff(3)ℂ)(ℤ3). This space allows a simple physical interpretation as a phase space of a lattice of cells.

We find the SM SU(3) c ×SU(2) L ×U(1) Y action on (Aff(3)Λ)(ℝ3) to be a maximal anomaly-free gauge action preserving E(3) symmetry and symplectic structure, which can be constructed using two simple types of gauge-like lattice fields: Wilson gauge fields and correction terms for lattice deformations.

The lattice fermion fields we propose to quantize as low energy states of a canonical quantum theory with ℤ2-degenerated vacuum state. We construct anticommuting fermion operators for the resulting ℤ2-valued (spin) field theory.

A metric theory of gravity compatible with this model is presented too.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  2. 2.

    Banks, T., Dothan, Y., Horn, D.: Geometric fermions. Phys. Lett. B 117, 413 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. 3.

    Banks, T., Kogut, J., Susskind, L.: PRD 13, 1043 (1996)

    Article  ADS  Google Scholar 

  4. 4.

    Becher, P.: Phys. Lett. B 104, 221 (1981)

    Article  ADS  Google Scholar 

  5. 5.

    Becher, P., Joos, H.: The Dirac-Kähler equation and fermions on the lattice. Z. Phys. C Part. Fields 15, 343–365 (1982)

    Article  MathSciNet  Google Scholar 

  6. 6.

    Berezin, F.A.: The Method of Second Quantization. Academic Press, New York (1966)

    MATH  Google Scholar 

  7. 7.

    Bleuer, K.: Helv. Phys. Acta 23(5), 567–586 (1950)

    Google Scholar 

  8. 8.

    Chadha, S., Nielsen, H.B.: Nucl. Phys. B 217, 125–144 (1983)

    Article  ADS  Google Scholar 

  9. 9.

    Daviau, C.: Dirac equation in the Clifford algebra of space. In: Dietrich, V., Habetha, K., Jank, G. (eds.) Proc. of Clifford Algebra and Their Applications in Mathematical Physics, Aachen, 1996, pp. 67–87. Kluwer, Dordrecht (1998)

    Google Scholar 

  10. 10.

    Dirac, P.A.M.: Proc. R. Soc. A 114(767), 243–265 (1927)

    Article  ADS  Google Scholar 

  11. 11.

    Fermi, E.: Rev. Mod. Phys. 4(1), 87–132 (1932)

    MATH  Article  ADS  Google Scholar 

  12. 12.

    Frampton, P., Glashow, S.: Chiral color: an alternative to the standard model. Phys. Lett. B 190, 157 (1987)

    Article  ADS  Google Scholar 

  13. 13.

    Georgi, H., Glashow, S.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  14. 14.

    Gupta, S.: Proc. Phys. Lett. B 521, 429 (1950)

    Google Scholar 

  15. 15.

    Gupta, R.: Introduction to lattice QCD. arXiv:hep-lat/9807028 (1998)

  16. 16.

    Hestenes, D.: Space-time structure of weak and electromagnetic interactions. Found. Phys. 12, 153–168 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  17. 17.

    Isham, C.: Canonical quantum gravity and the problem of time. arXiv:gr-qc/9210011 (1992)

  18. 18.

    Kadic, A., Edelen, D.G.B.: A Gauge Theory of Dislocations and Disclinations. Lecture Notes in Physics, vol. 174. Springer, Berlin (1983)

    MATH  Google Scholar 

  19. 19.

    Kähler, E.: Rendiconti Mat. 21(3–4), 425 (1962). See also Ivanenko, D., Landau, L., Z. Phys. 48, 341 (1928)

    Google Scholar 

  20. 20.

    Kogut, J., Susskind, L.: PRD 11, 395 (1975)

    Article  ADS  Google Scholar 

  21. 21.

    Pati, J.C., Salam, A.: Lepton number as the fourth color. Phys. Rev. D 10, 275 (1974)

    Article  ADS  Google Scholar 

  22. 22.

    Pete, G.: Morse theory. http://www.math.u-szeged.hu/~gpete/morse.ps

  23. 23.

    Preskill, J.: Do black holes destroy information? arXiv:hep-th/9209058 (1992)

  24. 24.

    Rabin, J.M.: Nucl. Phys. B 201, 315 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. 25.

    Schmelzer, I.: A generalization of the Lorentz ether to gravity with general-relativistic limit. arXiv:gr-qc/0205035 (2002)

  26. 26.

    Susskind, L.: Phys. Rev. D 16, 3031 (1977)

    Article  ADS  Google Scholar 

  27. 27.

    Volovik, G.E.: Induced gravity in superfluid 3He. arXiv:cond-mat/9806010 (1998)

  28. 28.

    Wheeler, J.A.: Geometrodynamica. Academic Press, New York (1962)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Schmelzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmelzer, I. A Condensed Matter Interpretation of SM Fermions and Gauge Fields. Found Phys 39, 73–107 (2009). https://doi.org/10.1007/s10701-008-9262-9

Download citation

Keywords

  • Standard model
  • Ether interpretation