Foundations of Physics

, Volume 38, Issue 7, pp 610–647 | Cite as

The Foundations of Quantum Mechanics and the Evolution of the Cartan-Kähler Calculus

Article

Abstract

In 1960–1962, E. Kähler enriched É. Cartan’s exterior calculus, making it suitable for quantum mechanics (QM) and not only classical physics. His “Kähler-Dirac” (KD) equation reproduces the fine structure of the hydrogen atom. Its positron solutions correspond to the same sign of the energy as electrons.

The Cartan-Kähler view of some basic concepts of differential geometry is presented, as it explains why the components of Kähler’s tensor-valued differential forms have three series of indices. We demonstrate the power of his calculus by developing for the electron’s and positron’s large components their standard Hamiltonian beyond the Pauli approximation, but without resort to Foldy-Wouthuysen transformations or ad hoc alternatives (positrons are not identified with small components in K ähler’s work). The emergence of negative energies for positrons in the Dirac theory is interpreted from the perspective of the KD equation. Hamiltonians in closed form (i.e. exact through a finite number of terms) are obtained for both large and small components when the potential is time-independent.

A new but as yet modest new interpretation of QM starts to emerge from that calculus’ peculiarities, which are present even when the input differential form in the Kähler equation is scalar-valued. Examples are the presence of an extra spin term, the greater number of components of “wave functions” and the non-association of small components with antiparticles. Contact with geometry is made through a Kähler type equation pertaining to Clifford-valued differential forms.

Keywords

Foundations of quantum mechanics Cartan-Kähler calculus Foldy-Wouthuysen Positron’s Hamiltonian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartan, É.: Sur certaines expressions différentieles et le problème de Pfaff. Ann. Éc. Norm. 16, 239–332 (1899) MathSciNetGoogle Scholar
  2. 2.
    Kähler, E.: Einführung in die Theorie der Systeme von Differentialgleichungen. Chelsea, New York (1949) Google Scholar
  3. 3.
    Kähler, E.: Innerer und äusserer Differentialkalkül. Abh. Dtsch. Akad. Wiss. Berlin, Kl. Math. Phys. Tech. 4, 1–32 (1960) Google Scholar
  4. 4.
    Kähler, E.: Die Dirac-Gleichung. Abh. Dtsch. Akad. Wiss. Berlin, Kl. Math. Phys. Tech. 1, 1–38 (1961) Google Scholar
  5. 5.
    Kähler, E.: Der innere Differentialkalkül. Rend. Mat. 21, 425–523 (1962) Google Scholar
  6. 6.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964) Google Scholar
  7. 7.
    Graff, W.: Differential forms as spinors. Ann. Inst. H. Poincaré 19, 85–109 (1978) Google Scholar
  8. 8.
    Vargas, J.G., Torr, D.G.: Clifford-valued clifforms: a geometric language for Dirac equations. In: Ablamowicz, R., Fauser, B. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, vol. 1, Ixtapa, June–July 1999. Progress in Physics, vol. 18, pp. 135–154. Birkhäuser, Boston (2000) Google Scholar
  9. 9.
    Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics. North Holland, Amsterdam (1982) MATHGoogle Scholar
  10. 10.
    Cartan, É.: Leçons sur les Invariants Intégraux. Hermann, Paris (1922) MATHGoogle Scholar
  11. 11.
    Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover, New York (1989) MATHGoogle Scholar
  12. 12.
    Struik, D.J.: Lectures on Classical Differential Geometry. Addison Wesley, Cambridge (1950) MATHGoogle Scholar
  13. 13.
    Cartan, H.: Differential Forms. Hermann, Paris (1970). Reprinted Dover, New York (2006) MATHGoogle Scholar
  14. 14.
    Lichnerowicz, A.: Éléments de Calcul Tensoriel. Gabay, Paris (1987) Google Scholar
  15. 15.
    Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976) MATHGoogle Scholar
  16. 16.
    Slebodzinski, W.: Formes Extérieures et Leurs Applications, vol. 2. Panstwowe Wydawnictwo Naukowe, Warsaw (1963) MATHGoogle Scholar
  17. 17.
    Vargas, J.G., Torr, D.G.: Finslerian structures: the Cartan-Clifton method of the moving frame. J.  Math. Phys. 34(10), 4898–4913 (1993) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon, London (1966) Google Scholar
  19. 19.
    Mead, C.A.: Collective Electrodynamics: Quantum Foundations of Electromagnetism. MIT Press, Cambridge (2000) Google Scholar
  20. 20.
    Thaller, B.: The Dirac Equation. Springer, New York (1992) Google Scholar
  21. 21.
    Vargas, J.G., Torr, D.G.: Teleparallel Kähler calculus for spacetime. Found. Phys. 28, 931–958 (1998) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Vargas, J.G., Torr, D.G.: New perspectives on the Kähler calculus and wave functions. Paper presented at the 7th International Conference on Clifford Algebras, Université Paul Sabatier, Toulouse, 19–29 May 2005. To be published in Advances in Applied Clifford Algebras. www.cartan-einstein-unification.com/pdf/I.pdf
  23. 23.
    Vargas, J.G., Torr, D.G.: The Kähler-Dirac equation with non-scalar-valued input differential form. Paper presented at the 7th International Conference on Clifford Algebras, Université Paul Sabatier, Toulouse, 19–29 May 2005. To be published in Advances in Applied Clifford Algebras. www.cartan-einstein-unification.com/pdf/II.pdf
  24. 24.
    Vargas, J.G., Torr, D.G.: The emergence of a Kaluza-Klein microgeometry from the invariants of optimally Euclidean Lorentzian spaces. Found. Phys. 27, 533–558 (1997) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Cartan, É.: Sur les équations de la gravitation d’Einstein. J. Math. Pures Appl. 1, 141–203 (1922) Google Scholar
  26. 26.
    Vargas, J.G., Torr, D.G.: A different line of evolution of geometry on manifolds endowed with pseudo-Riemannian metrics of Lorentzian signature. In: Udriste, C., Balan, V. (eds.) Fifth Conference of Balkan Society of Geometers, Mangalia, August–September 2005. Balkan Geometry Society Proceedings, vol. 13, pp. 173–182. Balkan Geometry Press, Bucharest (2006). www.mathem.pub.ro/dept/confer05/M-VAA.PDF Google Scholar
  27. 27.
    Vargas, J.G., Torr, D.G.: Klein geometries, Lie differentiation and spin. Differ. Geom. Dyn. Syst. 10, 300–311 (2008). www.mathem.pub.ro/dgds/v10/D10-VA.pdf Google Scholar
  28. 28.
    Landau, L.D., Lifchitz, E.M.: Mécanique Quantique. Éditions Mir, Moscow (1966) MATHGoogle Scholar
  29. 29.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992) MATHGoogle Scholar
  30. 30.
    Gilmore, R.: Lie Groups, Lie Algebras and Some of Their Applications. Dover, New York (2002) Google Scholar
  31. 31.
    Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (suite). Ann. Éc. Norm. 41, 1–25 (1924) ADSMathSciNetGoogle Scholar
  32. 32.
    Sakurai, J.J.: Advanced Quantum Mechanics. Addison-Wesley, New York (1967) Google Scholar
  33. 33.
    Schmeikal, B.: Transposition in Clifford algebra: SU(3) from reorientation invariance. In: Ablamowicz, R. (ed.) Conference Proceedings on Clifford Algebras and Their Applications in Mathematical Physics, Cookeville, 2002. Birkhäuser, Boston (2003) Google Scholar
  34. 34.
    Iwanenko, D., Landau, L.D.: Zur Theorie des magnetischen Elektrons. Z. Phys. 48, 340–348 (1928) CrossRefADSGoogle Scholar
  35. 35.
    Donaldson, S.K., Kronheimer, B.P.: The Geometry of Four-Manifolds. Clarendon, Oxford (1990) MATHGoogle Scholar
  36. 36.
    Vargas, J.G., Torr, D.G.: The idiosyncrasies of anticipation in demiurgic physical unification with teleparallelism. Int. J. Comp. Anticip. Syst. 19, 210–225 (2006). www.cartan-einstein-unification.com/pdf/VI.pdf Google Scholar
  37. 37.
    Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Éc. Norm. 40, 325–412 (1923) MathSciNetGoogle Scholar
  38. 38.
    Cartan, É.: La théorie des groupes et les recherches récentes de géometrie differentielle. L’Enseign. Math. 24, 1–18 (1925) MathSciNetGoogle Scholar
  39. 39.
    Cartan, É.: La théorie des groupes et la géometrie. L’Enseign. Math. 26, 200–225 (1927) Google Scholar
  40. 40.
    Cartan, É.: Le rôle de la théorie des groupes de Lie dans l’évolution de la géometrie moderne. In: C.R. Congrès International, Oslo, pp. 92–103 (1936) Google Scholar
  41. 41.
    Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Springer, New York (1996) Google Scholar
  42. 42.
    Cartan, É.: La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisées. Exposés de Géométrie. Hermann, Paris (1935) Google Scholar
  43. 43.
    Vargas, J.G., Torr, D.G.: Of Finsler fiber bundles and the evolution of the calculus. In: Udriste, C., Balan, V. (eds.) Fifth Conference of Balkan Society of Geometers, Mangalia, August–September, 2005. Balkan Geometry Society Proceedings, vol. 13, pp. 183–191. Balkan Geometry Press, Bucharest (2006). www.mathem.pub.ro/dept/confer05/M-VAO.PDF Google Scholar
  44. 44.
    Einstein, A.: Théorie unitaire du champ physique. Ann. Inst. H. Poincaré 1, 1–24 (1930) MathSciNetGoogle Scholar
  45. 45.
    Debever, R. (ed.): Élie Cartan—Albert Einstein: Letters on Absolute Parallelism. Princeton University Press, Princeton (1979) Google Scholar
  46. 46.
    Vargas, J.G., Torr, D.G.: The Cartan-Einstein unification with teleparallelism and the discrepant measurements of Einstein’s gravitational constant. Found. Phys. 29, 145–200 (1999) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.PST AssociatesColumbiaUSA

Personalised recommendations