Foundations of Physics

, Volume 38, Issue 3, pp 257–292 | Cite as

The Arrow of Time: From Universe Time-Asymmetry to Local Irreversible Processes

  • Matías Aiello
  • Mario Castagnino
  • Olimpia Lombardi
Article

Abstract

In several previous papers we have argued for a global and non-entropic approach to the problem of the arrow of time, according to which the “arrow” is only a metaphorical way of expressing the geometrical time-asymmetry of the universe. We have also shown that, under definite conditions, this global time-asymmetry can be transferred to local contexts as an energy flow that points to the same temporal direction all over the spacetime. The aim of this paper is to complete the global and non-entropic program by showing that our approach is able to account for irreversible local phenomena, which have been traditionally considered as the physical origin of the arrow of time.

Keywords

??? 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castagnino, M., Lombardi, O., Lara, L.: The global arrow of time as a geometrical property of the universe. Found. Phys. 33, 877–912 (2003) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Castagnino, M., Lara, L., Lombardi, O.: The cosmological origin of time-asymmetry. Class. Quantum Gravity 20, 369–391 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Castagnino, M., Lara, L., Lombardi, O.: The direction of time: from the global arrow to the local arrow. Int. J. Theor. Phys. 42, 2487–2504 (2003) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Castagnino, M., Lombardi, O.: The generic nature of the global and non-entropic arrow of time and the double role of the energy-momentum tensor. J. Phys. A (Math. Gen.) 37, 4445–4463 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Castagnino, M., Lombardi, O.: A global and non-entropic approach to the problem of the arrow of time. In: Reimer, A. (ed.) Spacetime Physics Research Trends. Horizons in World Physics. Nova Science, New York (2005) Google Scholar
  6. 6.
    Castagnino, M., Lombardi, O.: The global non-entropic arrow of time: from global geometrical asymmetry to local energy flow. Synthese (in press) Google Scholar
  7. 7.
    Albert, D.: Time and Chance. Harvard University Press, Cambridge (2001) Google Scholar
  8. 8.
    Earman, J.: What time reversal invariance is and why it matters. Int. Stud. Philos. Sci. 16, 245–264 (2002) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lax, P.D., Phillips, R.S.: Scattering Theory. Academic Press, New York (1979) Google Scholar
  10. 10.
    Tabor, M.: Chaos and Integrability in Nonlinear Dynamics. Wiley, New York (1989) MATHGoogle Scholar
  11. 11.
    Penrose, R.: Singularities and time asymmetry. In: Hawking, S., Israel, W. (eds.) General Relativity, an Einstein Centenary Survey. Cambridge University Press, Cambridge (1979) Google Scholar
  12. 12.
    Sachs, R.G.: The Physics of Time-Reversal. University of Chicago Press, Chicago (1987) Google Scholar
  13. 13.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, Oxford (1996) Google Scholar
  14. 14.
    Ehrenfest, P., Ehrenfest, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca (1959) (original 1912) MATHGoogle Scholar
  15. 15.
    Brush, S.: The Kind of Motion We Call Heat. North Holland, Amsterdam (1976) Google Scholar
  16. 16.
    Boltzmann, L.: Ann. Phys. 60, 392–398 (1897) Google Scholar
  17. 17.
    Reichenbach, H.: The Direction of Time. University of California Press, Berkeley (1956) Google Scholar
  18. 18.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. 1. Addison-Wesley, New York (1964) Google Scholar
  19. 19.
    Davies, P.C.: The Physics of Time Asymmetry. University of California Press, Berkeley (1974) Google Scholar
  20. 20.
    Davies, P.C.: Stirring up trouble. In: Halliwell, J.J., Perez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1994) Google Scholar
  21. 21.
    Earman, J.: Philos. Sci. 41, 15–47 (1974) CrossRefGoogle Scholar
  22. 22.
    Hawking, S., Ellis, J.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973) MATHGoogle Scholar
  23. 23.
    Schutz, B.F.: Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge (1980) MATHGoogle Scholar
  24. 24.
    Grünbaum, A.: Philosophical Problems of Space and Time. Reidel, Dordrecht (1973) Google Scholar
  25. 25.
    Sklar, L.: Space, Time and Spacetime. University of California Press, Berkeley (1974) Google Scholar
  26. 26.
    Penrose, O., Percival, I.C.: The direction of time. Proc. Phys. Soc. 79, 605–616 (1962) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Caldwell, R., Kamionkowski, M., Weinberg, N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003) CrossRefADSGoogle Scholar
  28. 28.
    Bohm, A., Gadella, M.: Dirac Kets, Gamow Vectors, and Gel’fand Triplets. Springer, Berlin (1989) Google Scholar
  29. 29.
    Bohm, A., Antoniou, I., Kielanowski, P.: The preparation/registration arrow of time in quantum mechanics. Phys. Lett. A 189, 442–448 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Bohm, A., Antoniou, I., Kielanowski, P.: A quantum mechanical arrow of time and the semigroup time evolution of Gamow vectors. J. Math. Phys. 36, 2593–2604 (1994) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Bohm, A., Maxson, S., Loewe, M., Gadella, M.: Quantum mechanical irreversibility. Phys. A 236, 485–549 (1997) CrossRefGoogle Scholar
  32. 32.
    Bohm, A., Wickramasekara, S.: The time reversal operator for semigroup evolutions. Found. Phys. 27, 969–993 (1997) CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Castagnino, M., Gadella, M., Lombardi, O.: Time’s arrow and irreversibility in time-asymmetric quantum mechanics. Int. Stud. Philos. Sci. 19, 223–243 (2005) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Castagnino, M., Gadella, M., Lombardi, O.: Time-reversal. irreversibility and arrow of time in quantum mechanics, Found. Phys. 36, 407–426 (2006) MATHMathSciNetGoogle Scholar
  35. 35.
    Bogoliubov, N., Logunov, A.A., Todorov, I.T.: Axiomatic Quantum Field Theory. Benjamin-Cummings, Reading (1975) MATHGoogle Scholar
  36. 36.
    Roman, P.: Introduction to Quantum Field Theory. Wiley, New York (1969) MATHGoogle Scholar
  37. 37.
    Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1996) MATHGoogle Scholar
  38. 38.
    Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995) Google Scholar
  39. 39.
    Visser, M.: Lorentzian Wormholes. Springer, Berlin (1996) Google Scholar
  40. 40.
    Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Berlin (2002) Google Scholar
  41. 41.
    Birrell, N., Davies, P.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) MATHGoogle Scholar
  42. 42.
    Castagnino, M., Giacomini, H., Lara, L.: Dynamical properties of the conformally coupled flat FRW model. Phys. Rev. D 61, 107302 (2000) CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Castagnino, M., Chavarriga, J., Lara, L., Grau, M.: Exact solutions for the fluctuations in a flat FRW universe coupled to a scalar field. Int. J. Theor. Phys. 41, 2027–2035 (2002) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Huang, K.: Statistical Mechanics. Wiley, New York (1987) MATHGoogle Scholar
  45. 45.
    Balliant, R.: From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Springer, Heidelberg (1992) Google Scholar
  46. 46.
    Levstein, P.R., Usaj, G., Pastawski, H.M.: Attenuation of polarization echoes in nuclear magnetic resonance: a study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys. 108, 2718–2724 (1998) CrossRefADSGoogle Scholar
  47. 47.
    Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Matías Aiello
    • 1
  • Mario Castagnino
    • 2
  • Olimpia Lombardi
    • 3
  1. 1.Instituto de Astronomía y Física del Espacio, Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET—Instituto de Física de RosarioInstituto de Astronomía y Física del EspacioBuenos AiresArgentina
  3. 3.CONICET—Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations