Skip to main content

Quantum Mechanics: Myths and Facts

Abstract

A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

This is a preview of subscription content, access via your institution.

References

  1. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”. I. Phys. Rev. 85(2), 166–179 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”. II. Phys. Rev. 85(2), 180–193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  3. Tumulka, R.: Understanding Bohmian mechanics: a dialogue. Am. J. Phys. 72(9), 1220–1226 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Passon, O.: How to teach quantum mechanics. Eur. J. Phys. 25(6), 765–769 (2004)

    Article  Google Scholar 

  5. Styer, D.F., et al.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Passon, O.: Why isn’t every physicist a Bohmian? quant-ph/0412119

  7. Pauli, W.: Handbuch der Physik. Springer, Berlin (1926)

    Google Scholar 

  8. Busch, P.: The time energy uncertainty relation, quant-ph/0105049

  9. Boström, K.: Quantizing time, quant-ph/0301049

  10. Aharonov, Y., Bohm, D.: Time in quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  11. ’t Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quantum Gravity 16, 3263–3279 (1999)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  12. ’t Hooft, G.: Determinism in free bosons. Int. J. Theor. Phys. 42, 355–361 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  13. Rosen, N.: The relation between classical and quantum mechanics. Am. J. Phys. 32(8), 597–600 (1964)

    Article  ADS  Google Scholar 

  14. Rosen, N.: Mixed states in classical mechanics. Am. J. Phys. 33(2), 146–150 (1965)

    Article  ADS  Google Scholar 

  15. Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)

    MATH  Article  ADS  Google Scholar 

  16. Nikolić, H.: Classical mechanics without determinism. Found. Phys. Lett. 19, 553–566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  18. Mermin, N.D.: Bringing home the atomic world: quantum mysteries for anybody. Am. J. Phys. 49(10), 940–943 (1981)

    Article  ADS  Google Scholar 

  19. Laloë, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phys. 69(6), 655–701 (2001)

    Article  ADS  Google Scholar 

  20. Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  22. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731–734 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Jordan, T.F.: Quantum mysteries explored. Am. J. Phys. 62(10), 874–880 (1994)

    Article  ADS  Google Scholar 

  24. Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  25. Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  26. Berndl, K., Goldstein, S.: Comment on “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 780 (1994)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  27. Hardy, L.: Hardy replies. Phys. Rev. Lett. 72, 781 (1994)

    Article  ADS  Google Scholar 

  28. Schauer, D.L.: Comment on “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 782 (1994)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  29. Hardy, L.: Hardy replies. Phys. Rev. Lett. 72, 783 (1994)

    Article  ADS  Google Scholar 

  30. Goldstein, S.: Nonlocality without inequalities for almost all entangled states for two particles. Phys. Rev. Lett. 72, 1951 (1994)

    Article  ADS  Google Scholar 

  31. Mermin, N.D.: Quantum mysteries refined. Am. J. Phys. 62(10), 880–887 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zeilinger, A.: The message of the quantum. Nature 438(8), 743 (2005)

    Article  ADS  Google Scholar 

  33. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  34. Smerlak, M., Rovelli, C.: Relational EPR. Found. Phys. 37, 427–445 (2007)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  35. Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66(9), 753–767 (1998)

    Article  ADS  Google Scholar 

  36. Medina, R.: Orthodox quantum mechanics free from paradoxes, quant-ph/0508014

  37. Cohen, D.: Lecture notes in quantum mechanics, quant-ph/0605180

  38. Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: Naive realism about operators, quant-ph/9601013

  39. Bilaniuk, O.M.P., Deshpande, V.K., Sudarshan, E.C.G.: “Meta” relativity. Am. J. Phys. 30(10), 718–723 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  40. Bilaniuk, O.M.P., Sudarshan, E.C.G.: Particles beyond the light barrier. Phys. Today 22(5), 43–51 (1969)

    Article  Google Scholar 

  41. Liberati, S., Sonego, S., Visser, M.: Faster-than-c signals, special relativity, and causality. Ann. Phys. 298, 167–185 (2002)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  42. Nikolić, H.: Causal paradoxes: a conflict between relativity and the arrow of time. Found. Phys. Lett. 19, 259–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  44. Dürr, D., Goldstein, S., Münch-Berndl, K., Zanghì, N.: Hypersurface Bohm-Dirac models. Phys. Rev. A 60, 2729–2736 (1999)

    Article  ADS  Google Scholar 

  45. Horton, G., Dewdney, C.: Relativistically invariant extension of the de Broglie-Bohm theory of quantum mechanics. J. Phys. A 35, 10117–10127 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  46. Horton, G., Dewdney, C.: A relativistically covariant version of Bohm’s quantum field theory for the scalar field. J. Phys. A 37, 11935–11944 (2004)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  47. Nikolić, H.: Relativistic quantum mechanics and the Bohmian interpretation. Found. Phys. Lett. 18, 549–561 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nikolić, H.: Relativistic Bohmian interpretation of quantum mechanics, quant-ph/0512065, talk given at conference “On the Present Status of Quantum Mechanics”, Mali Lošinj, Croatia, 7–9 September 2005

  49. Nikolić, H.: Covariant canonical quantization of fields and Bohmian mechanics. Eur. Phys. J. C 42, 365–374 (2005)

    Article  ADS  Google Scholar 

  50. Nikolić, H.: Quantum determinism from quantum general covariance. Int. J. Mod. Phys. D 15, 2171–2176 (2006)

    Article  ADS  MATH  Google Scholar 

  51. Nikolić, H.: Honorable Mention of the Gravity Research Foundation 2006 Essay Competition

  52. Nikolić, H.: Covariant many-fingered time Bohmian interpretation of quantum field theory. Phys. Lett. A 348, 166–171 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  53. Nikolić, H.: Quantum nonlocality without hidden variables: an algorithmic approach, quant-ph/0703071

  54. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw–Hill, New York (1964)

    Google Scholar 

  55. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21(3), 400–406 (1949)

    MATH  Article  ADS  Google Scholar 

  56. Ghose, P., Home, D., Sinha Roy, M.N.: Relativistic quantum mechanics of bosons. Phys. Lett. A 183(4), 267–271 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  57. Gavrilov, S.P., Gitman, D.M.: Quantization of point-like particles and consistent relativistic quantum mechanics. Int. J. Mod. Phys. A 15(28), 4499–4538 (2000)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  58. Nikolić, H.: Probability in relativistic quantum mechanics and foliation of spacetime, quant-ph/0602024

  59. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  60. Zeh, H.D.: There is no “first” quantization. Phys. Lett. A 309, 329–334 (2003)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  61. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw–Hill, New York (1965)

    MATH  Google Scholar 

  62. Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1984)

    Google Scholar 

  63. Jaffe, R.L.: Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005)

    Article  ADS  Google Scholar 

  64. Schubert, C.: Perturbative quantum field theory in the string-inspired formalism. Phys. Rep. 355, 73–234 (2001)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  65. Thorndike, A.: Using Feynman diagrams to solve the classical harmonic oscillator. Am. J. Phys. 68(2), 155–159 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  66. Penco, R., Mauro, D.: Perturbation theory via Feynman diagrams in classical mechanics, hep-th/0605061

  67. Creutz, M.: Quarks, Gluons and Lattices. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  68. Davies, C.: Lattice QCD, hep-ph/0205181

  69. Sharpe, S.R.: Phenomenology from the lattice, hep-ph/9412243

  70. Carroll, S.M.: Lecture notes on general relativity, gr-qc/9712019

  71. Nelson, R.A.: Generalized Lorentz transformation for an accelerated, rotating frame of reference. J. Math. Phys. 28, 2379–2383 (1987)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  72. Nelson, R.A.: J. Math. Phys. 35, 6224–6225 (1994), Erratum

    MATH  Article  ADS  MathSciNet  Google Scholar 

  73. Nikolić, H.: Relativistic contraction and related effects in noninertial frames. Phys. Rev. A 61, 032109 (2000)

    Article  ADS  Google Scholar 

  74. Nikolić, H.: Relativistic contraction of an accelerated rod. Am. J. Phys. 67(11), 1007–1012 (1999)

    Article  ADS  Google Scholar 

  75. Nikolić, H.: The role of acceleration and locality in the twin paradox. Found. Phys. Lett. 13, 595–601 (2000)

    Article  MathSciNet  Google Scholar 

  76. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  77. Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047–1056 (1984)

    Article  ADS  Google Scholar 

  78. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, New York (1982)

    MATH  Google Scholar 

  79. Rindler, W.: Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34(12), 1174–1178 (1966)

    Article  ADS  Google Scholar 

  80. Nikolić, H.: Inappropriateness of the Rindler quantization. Mod. Phys. Lett. A 16, 579–581 (2001)

    Article  Google Scholar 

  81. Sriramkumar, L., Padmanabhan, T.: Probes of the vacuum structure of quantum fields in classical backgrounds. Int. J. Mod. Phys. D 11, 1–34 (2002)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  82. Nikolić, H.: A general-covariant concept of particles in curved background. Phys. Lett. B 527, 119–124 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Nikolić, H.: The general-covariant and gauge-invariant theory of quantum particles in classical backgrounds. Int. J. Mod. Phys. D 12, 407–444 (2003)

    Article  ADS  MATH  Google Scholar 

  84. Nikolić, H.: Generalizations of normal ordering and applications to quantization in classical backgrounds. Gen. Rel. Grav. 37, 297–311 (2005)

    Article  ADS  MATH  Google Scholar 

  85. Davies, P.C.W.: Particles do not exist. In: Christensen, S.M. (ed.) Quantum Theory of Gravity, pp. 66–77. Adam Hilger Ltd, Bristol (1984)

    Google Scholar 

  86. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  87. Brout, R., Massar, S., Parentani, R., Spindel, Ph.: A primer for black hole quantum physics. Phys. Rep. 260, 329–446 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  88. Jacobson, T.: Introduction to quantum fields in curved spacetime and the Hawking effect, gr-qc/0308048

  89. Padmanabhan, T.: Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  90. Srinivasan, K., Padmanabhan, T.: Doing it with mirrors: classical analogues for black hole radiation, gr-qc/9812087

  91. Nouri-Zonoz, M., Padmanabhan, T.: The classical essence of black hole radiation, gr-qc/9812088

  92. Padmanabhan, T.: Physical interpretation of quantum field theory in noninertial coordinate systems. Phys. Rev. Lett. 64, 2471–2474 (1990)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  93. Belinski, V.A.: On the existence of black hole evaporation yet again. Phys. Lett. A 354, 249–257 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  94. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  95. Manogue, C.A.: The Klein paradox and superradiance. Ann. Phys. 181, 261–283 (1988)

    Article  ADS  Google Scholar 

  96. Nikolić, H.: On particle production by classical backgrounds, hep-th/0103251

  97. Nikolić, H.: Physical stability of the QED vacuum, hep-ph/0105176

  98. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  99. Nikolić, H.: Bohmian particle trajectories in relativistic bosonic quantum field theory. Found. Phys. Lett. 17, 363–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  100. Nikolić, H.: Bohmian particle trajectories in relativistic fermionic quantum field theory. Found. Phys. Lett. 18, 123–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  101. Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  102. Szabo, R.J.: BUSSTEPP lectures on string theory, hep-th/0207142

  103. Polchinski, J.: What is string theory? hep-th/9411028

  104. Nikolić, H.: Strings, world-sheet covariant quantization and Bohmian mechanics. Eur. Phys. J. C 47, 525–529 (2006)

    Article  ADS  Google Scholar 

  105. Nikolić, H.: Boson-fermion unification, superstrings, and Bohmian mechanics, hep-th/0702060

  106. Nikolić, H.: Strings, T-duality breaking, and nonlocality without the shortest distance. Eur. Phys. J. C 50, 431–434 (2007)

    Article  ADS  Google Scholar 

  107. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  108. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Hawking, S.W.: The nature of space and time, hep-th/9409195

  110. Townsend, P.K.: Black holes, gr-qc/9707012

  111. Visser, M.: Hawking radiation without black hole entropy. Phys. Rev. Lett. 80, 3436–3439 (1998)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  112. Carlip, S.: Quantum gravity: A progress report. Rep. Prog. Phys. 64, 885–942 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  113. Alvarez, E.: Quantum gravity, gr-qc/0405107

  114. Rovelli, C.: Loop quantum gravity. Living Rev. Rel. 1, 1–75 (1998), gr-qc/9710008

    MathSciNet  Google Scholar 

  115. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  116. Horowitz, G.T.: Quantum states of black holes, gr-qc/9704072

  117. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  118. Giddings, S.B.: Quantum mechanics of black holes, hep-th/9412138

  119. Strominger, A.: Les Houches lectures on black holes, hep-th/9501071

  120. Nikolić, H.: Black holes radiate but do not evaporate. Int. J. Mod. Phys. D 14, 2257–2261 (2005)

    Article  ADS  MATH  Google Scholar 

  121. Nikolić, H.: Honorable Mention of the Gravity Research Foundation 2005 Essay Competition

  122. Nikolić, H.: Cosmological constant, semiclassical gravity, and foundations of quantum mechanics, gr-qc/0611037

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrvoje Nikolić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nikolić, H. Quantum Mechanics: Myths and Facts. Found Phys 37, 1563–1611 (2007). https://doi.org/10.1007/s10701-007-9176-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9176-y

Keywords

  • Quantum mechanics
  • Particle
  • Field
  • Reality
  • Nonlocality
  • Uncertainty relation
  • Randomness
  • Black-hole entropy