Torsion Fields, Cartan–Weyl Space–Time and State-Space Quantum Geometries, their Brownian Motions, and the Time Variables

We review the relation between spacetime geometries with trace-torsion fields, the so-called Riemann–Cartan–Weyl (RCW) geometries, and their associated Brownian motions. In this setting, the drift vector field is the metric conjugate of the trace-torsion one-form, and the laplacian defined by the RCW connection is the differential generator of the Brownian motions. We extend this to the state-space of non-relativistic quantum mechanics and discuss the relation between a non-canonical quantum RCW geometry in state-space associated with the gradient of the quantum-mechanical expectation value of a self-adjoint operator given by the generalized laplacian operator defined by a RCW geometry. We discuss the reduction of the wave function in terms of a RCW quantum geometry in state-space. We characterize the Schroedinger equation in terms of the RCW geometries and Brownian motions. Thus, in this work, the Schroedinger field is a torsion generating field, both for the linear and non-linear cases. We discuss the problem of the many times variables and the relation with dissipative processes, and the role of time as an active field, following Kozyrev and a recent experiment in non-relativistic quantum systems. We associate the Hodge dual of the drift vector field with a possible angular-momentum source for the phenomenae observed by Kozyrev.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Adler and L. P. Horwitz, J. Math. Phys. 41, 2485 (2000); arXiv:quant-ph/9909026; S. Adler, Quantum Theory as an Emergent Phenomenon (Cambridge University Press, Cambridge, UK, 2004).

  2. 2.

    M. Allais, Comput. Rend. Acad. Sci. Paris 327, (II b), 1411–1419 (2000) and 1, (IV), 1205–1210 (2000); S. E. Shnoll, Progress in Physics 2, 39–45 (2006); S. E. Shnoll et al., physics/0412152; physics/0501004; physics/0504092; Progress in Physics 1, 81–84 (2005).

  3. 3.

    J. M. Bismut, Mécanique Analytique, (Springer LNM 866) (Springer, Berlin,1982).

  4. 4.

    D. Bohm, Wholeness and the Implicate Order (Routledge, London, 1982); B. J. Hiley, F. David Peat, eds. Quantum Implications, (Routledge, London, 1987).

  5. 5.

    R. Cahill, Prog. Phys. 4, 73–92 (2006) and references therein .

  6. 6.

    C. Castro, Found. Phys., in press (2006).

  7. 7.

    Castro C., Mahecha J. (2006). Prog. Phys. 3(1): 38–45

    Google Scholar 

  8. 8.

    R. E. Collins and J. R. Fanchi, Nuovo Cimento A 48, 314 (1978); J. Fanchi, Found.Phys. 30(8), 1161–1189 (2000); 31(9), 1267–1285 (2001).

  9. 9.

    J. G. Cramer, Int. J. Theor. Phys. 27(2), 227–236 (1998); Found. Phys. 18, 1205 (1988).

    Google Scholar 

  10. 10.

    E. B. Davies, Heat Kernels and Spectral Theory (Cambridge University Press,Cambridge, UK, 1989); S. Rosenberg, The Laplacian on a Riemannian Manifold, London Mathematical Society Students Texts, Vol. 31 (Cambridge University Press, Cambridge, UK, 1997); R. S. Strichartz, J. Func. Anal. 52(1), 48–79 (1983).

  11. 11.

    V. de Sabbata and C. Sivaram, Spin and Torsion in Gravitation (World Scientific, Singapore, 1994); F. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nestor, Rev. Mod. Phys. 15, 393 (1976); M. Blagojevic, Gravitation and Gauge Fields (Institute of Physics Publications, Bristol, 2002); R. T. Hammond, Rep. Prog. Phys. 65, 599 (2004).

  12. 12.

    Debever R. (1983). The Einstein–Cartan Correspondence. Royal Academy of Sciences, Belgium

    Google Scholar 

  13. 13.

    A. Einstein and L. Kauffman, Ann. Math. 56 (1955); Yu. Obukhov, Phys. Lett. 90 A, 13 (1982).

  14. 14.

    Fanchi J. (1993). Parametrized Relativistic Quantum Theory. Kluwer Academic, Dordrecht

    Google Scholar 

  15. 15.

    Fock V. (1956). The Theory of Gravitation. Pergamon, London-New York

    Google Scholar 

  16. 16.

    Frankel T. (2000). The Geometry of Physics, An Introduction. Cambridge University Press, Cambridge

    Google Scholar 

  17. 17.

    Gaffney M.P. (1953). Ann. Math. 60: 140–145

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gill T., Zachary W.W., Lindesay J. (2001). Found. Phys. 31(9): 1299–1355

    Article  MathSciNet  Google Scholar 

  19. 19.

    A. Heslot, Phys. Rev. D 31, 1341–1348 (1985); J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697–1700, (1990); G. W. Gibbons, J. Geom. Phys. 8, 147–162 (1992); R. Cirelli, A. Mania, and L. Pizzocchero, J. Math. Phys. 31, 2891–2897 (1990).

  20. 20.

    L. P. Horwitz, private communication.

  21. 21.

    L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973); L. P. Horwitz and C. Piron, Helv. Phys. Acta 66, 694 (1993); M. C. Land, N. Shnerb, and L. P. Horwitz, J. Math. Phys. 36, 3263 (1995); L. P. Horwitz and N. Shnerb, Found. Phys. 28, 1509 (1998).

  22. 22.

    L. P. Horwitz and Y. Rabin, quant-ph/0507044, Lett. Nuovo Cimento 17, 501 (1976). L. P. Horwitz, “On the significance of a recent experiment demostrating quantum interference in time, quant-ph/0507044; contribution to these Proceedings.

    Google Scholar 

  23. 23.

    L. P. Hughston, Proc. Roy. Soc. Lond. 452(1947), 953–979 (1996).

  24. 24.

    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes (North-Holland/Kodansha, Amsterdam-Tokyo, 1981).

  25. 25.

    A. Kaivarainen, arxiv.physics/0003001.

  26. 26.

    R. Kiehn, http://www22.pair.com/csdc/pdf/bohmplus.pdf.

  27. 27.

    R. Kiehn, Wakes, Coherence and Turbulent Structures (Lulu, 2004).

  28. 28.

    Kolmogorov A.N. (1937). “Zur Umkehrbarkeit der statistichen Naturgesetze”. Math. Ann. 113: 776–772

    Google Scholar 

  29. 29.

    S. M. Korotaev, “On the way to understanding the time phenomenon,” in The Construction of Time in the Natural Sciences, Part 2, A. Levich, ed. (World Scientific, Singapore, 1996); pp. 60–74, ibid.“On the possibility of the causal analysis of geophysical processes,” Geomagnetism and Aeronomy 32(1), 27–33 (1992); and www.chronos.msu.edu; S. M. Korotaev, V. O. Serdyuk, and J. V. Gorohov, “Forecast of solar and geomagnetic activity on the macroscopic nonlocality effect,” Hadronic J. (to appear) (2007).

    Google Scholar 

  30. 30.

    N. A. Kozyrev,“On the possibility of experimental investigation of the properties of time,” in Time in Science and Philosophy (Prague, 1971) pp. 111–132. Kozyrev N. A., Nasonov V. V. O Nekhotoryh Svoistvah vremeni, “Obnaruzhennykh Astronomicheskimi Nablyudeniyami, Problemy Issledovaniya Vselennoi,” 9, 76 (1980) (Russian), www.chronos.msu.edu.

  31. 31.

    A. N. Kozyrev, “Astronomical proofs of the reality of 4D Minkowski geometry,” in Manifestations of Cosmic Factors on Earth and Moon (Moscow-Leningrad, 1980) pp.85–93; www.chronos.msu.ru.

  32. 32.

    N. Kozyrev, “Sources of stellar energy and the theory of the internal constitution of stars,” Progr. Phys. 3, 65–99 (2005); reprint of the original in Russian.

  33. 33.

    A. Kyprianidis, Phys. Rep. 155(1), 1–27 (1987), and references therein.

  34. 34.

    M. M. Lavrentiev, V. A. Gusev, I. A. Yegonova, M. K. Lutset, S. F. Fominykh, “O Registratsii istinnogo polozheniya solntsa,” Dokl. Akad. Nauk SSSR 315(2) (1990) (Russian), “On the registration of a true position of the sun,” M. M. Lavrentiev, I. A. Yeganova, V. G. Medvedev, V. K. Oleinik, S. F. Fominykh, O Skanirovanii Zvyeozdnogo neba Datchikom Kozyreva”, Dokl. Akad. Nauk 323(4) (1992) (On the Scanning of the Star Sky with Kozyrev’s Detector).

  35. 35.

    A. P. Levich, “Motivations and problems in the studies of time,” in Constructions of Time in Natural Science: On the Way to Understanding the Time Phenomenon; Part 1, Interdisciplinary Studies (Moscow University Press, Moscow, (1996) pp. 1–15,; “Time as variability of natural systems: methods of quantitative description of changes and creation of changes by substantial flows,” in Constructions of Time in Natural Science: On the Way to Understanding the Time Phenomenon; Part 1. Interdisciplinary Studies (Moscow University Press, Moscow, 1996), pp. 149–192; ibid. Gravit. Cosmol. 1(3), 237–242 (1995); www.chronos.msu.edu.

  36. 36.

    F. Lindner et al., quant-phi/0503165 and Phys. Rev. Letts. 95, 040401 (2005)

    Google Scholar 

  37. 37.

    Malliavin P. (1978). Géométrie Différentielle Stochastique. Les Presses University Press, Montreal

    Google Scholar 

  38. 38.

    O. Manuel, M.Mozina, and H. Ratcliffe, arxiv.org/astro-ph/0511/0511379.

  39. 39.

    D. Miller, Rev. Mod. Phys. 2, 203–242 (1933).

    Google Scholar 

  40. 40.

    H. Muller, Raum und Zeit, Special Issue 1 (Ehlers, 2003), www.globalscaling.de

  41. 41.

    H. Muller, Raum Zeit 127, 76–77 (2004); R. Jahn, B. Dunne, G. Bradish, Y. Lettieri, and R. Nelson, “Mind/machine consortium:portteg replication experiments,” J. Sci. Explor. 4(4), 499–555; www.princeton.edu/ pear/publist.html; I. Marcikic et al., “Long-distance quantum teleportation of qubits at telecommunications wavelengths,” Lett. Nat. 412, 30, (2003); A. Furusawa et al., “Unconditional quantum teleportation,” Science, 23, 706–709 (1998), www.its.caltech.edu/ qoptics/teleport.html.

    Google Scholar 

  42. 42.

    Nagasawa M. (2000). Stochastic Processes in Quantum Physics. Birkhauser, Boston-Basel

    Google Scholar 

  43. 43.

    Nelson E. (1985). Quantum Fluctuations. University Press, Princeton, NJ

    Google Scholar 

  44. 44.

    L. Nottale, Fractal Space-Time and Microphysics (World Scientific, Singapore, 1993); Astron. Astrophys. Lett. 315, L9 (1996); Chaos Solitons Fractals 7, 877 (1996).

  45. 45.

    L. Nottale, G. Schumacher, and E. T. Lefèvre, Astron. Astrophys. 361, 379 (2000).

    Google Scholar 

  46. 46.

    O. Oron and L. P. Horwitz, “Relativistic brownian motion as an eikonal approximation to a quantum evolution equation,” Found of Phys 33, 1177 (2003); ibid. in Progress in General Relativity and Quantum Cosmology Research, V. Dvoeglazov, ed. (Nova Science, Hauppage, 2004); ibid., Phys. Lett. A 280, 265 (2001).

  47. 47.

    Pavsic M. (2001). The Landscape of Theoretical Physics: A Global View. Kluwer Academic, Dordrecht

    Google Scholar 

  48. 48.

    D. L. Rapoport and S. Sternberg, Ann. Phys 158(11), 447–475 (1984); Nuovo Cimento 80A, 371–383 (1984).

  49. 49.

    D. L. Rapoport, in Group XXI, Physical Applications of Aspects of Geometry, Groups and Algebras, Proceedings of the XXI International Conference on Group Theoretical Methods in Physics, Goslar, Germany, June 1995, H.Doebner et al., eds, 446–450, (World Scientific, Singapore, 1996); pp. 946–950 ibid., Adv. Appl. Clifford Algebras 8(1), 126–149 (1998).

  50. 50.

    D. L. Rapoport, Rep. Math. Phys. 49(1), 1–49 (2002), 50(2), 211–250 (2002), Random Operts. Stoch. Eqts. 11, (2), 2, 109–150 (2003) and 11(4), 351–382 (2003); in Trends in Partial Differential Equations of Mathematical Physics, Obidos, Portugal (2003), J. F.Rodrigues et al., eds. Progress in Nonlinear Partial Differential Equations, Vol. 61 (Birkhausser, Boston, 2005); in Instabilities and Nonequilibrium Structures VII and VIII, O. Descalzi et al., eds. Kluwer Series in Nonlinear Phenomenae and Complex System (Kluwer Academic, Dordrecht, 2004); ibid. Discrete and Cont. Dynamical Systems, series B, Special Issue, Third Internal Conference Differential Equations and Dynamical Systems, Kennesaw University, May 2000, 327–336, S. Hu ed. (2000).

  51. 51.

    Rapoport D.L. (2005). Found. Phys. 35(7): 1205–1244

    MATH  Article  MathSciNet  ADS  Google Scholar 

  52. 52.

    Rapoport D.L. (2005). Found. Phys. 7: 1383–1431

    Article  MathSciNet  ADS  Google Scholar 

  53. 53.

    R. M. Santilli, Elements of Hadronic Mechanics III (Hadronic-Naukova, Palm Harbor-Kiev, 1993); ibid. Isodual Theory of Antimatter, with Applications to Antigravity, Spacetime Machine and Grand Unification (Springer, New York, 2006).

  54. 54.

    Schechter M. (1981). Operator Methods in Quantum Mechanics. North-Holland, New York

    Google Scholar 

  55. 55.

    T. Schilling, Geometric Quantum Mechanics, Ph.D. thesis (Penn State University, 1996).

  56. 56.

    E. Schroedinger, Sitzunsberger Press Akad. Wiss. Math. Phys. Math. 144, (1931). Ann. I. H. Poincaré 11, 300 (1932).

  57. 57.

    Stueckelberg E.C. (1941). Helv. Phys. Acta 14, 322–588

    MathSciNet  Google Scholar 

  58. 58.

    Trump M., Schieve W. (1994). Classical Relativistic Many-Body Dynamics. Kluwer Academic, Dordrecht

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diego L. Rapoport.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rapoport, D.L. Torsion Fields, Cartan–Weyl Space–Time and State-Space Quantum Geometries, their Brownian Motions, and the Time Variables. Found Phys 37, 813–854 (2007). https://doi.org/10.1007/s10701-007-9126-8

Download citation

Keywords

  • quantum geometries
  • torsion fields
  • active time
  • Brownian motions
  • wave-function reduction
  • Schroedinger equation