The Universe as an Eigenstate: Spacetime Paths and Decoherence

This paper describes how the entire universe might be considered an eigenstate determined by classical limiting conditions within it. This description is in the context of an approach in which the path of each relativistic particle in spacetime represents a fine-grained history for that particle, and a path integral represents a coarse-grained history as a superposition of paths meeting some criteria. Since spacetime paths are parametrized by an invariant parameter, not time, histories based on such paths do not evolve in time but are rather histories of all spacetime. Measurements can then be represented by orthogonal states that correlate with specific points in such coarse-grained histories, causing them to decohere, allowing a consistent probability interpretation. This conception is applied here to the analysis of the two slit experiment, scattering and, ultimately, the universe as a whole. The decoherence of cosmological states of the universe then provides the eigenstates from which our “real” universe can be selected by the measurements carried out within it.

This is a preview of subscription content, log in to check access.

References

  1. Stueckelberg E.C.G. (1941). Helv. Phys. Acta 14: 588

    MATH  MathSciNet  Google Scholar 

  2. E. C. G. Stueckelberg, Helv. Phys. Acta 15, 23 (1942).

    Google Scholar 

  3. Feynman R.P. (1950). Phys. Rev. 80: 440

    MATH  Article  ADS  MathSciNet  Google Scholar 

  4. Feynman R.P.(1951). Phys. Rev 84: 108

    MATH  Article  ADS  MathSciNet  Google Scholar 

  5. Fanchi J.R. (1993). Parametrized Relativistic Quantum Theory. Kluwer Academic, Dordrecht

    Google Scholar 

  6. Griffiths R.B. (1984). J. Stat. Phys 36: 219

    MATH  Article  ADS  Google Scholar 

  7. Omnès R.(1988). J. Stat. Phys. 53: 893

    Article  MATH  ADS  Google Scholar 

  8. M. Gell-Mann and J. Hartle, in Complexity, Entropy and the Physics of Information, W. Zurek, ed. (Addison-Wesley, Reading, 1990), Vol. VIII of Sante Fe Institute Studies in the Science of Complexity.

  9. J. B. Hartle, in Gravitation and Quantizations: Proceedings of the 1992 Les Houches Summer School, B. Julia and J. Zinn-Justin, eds. (North Holland, Amsterdam, 1995), gr-qc/9304006.

  10. Everett H. (1957). Rev. Mod. Phys. 29: 454

    Article  ADS  MathSciNet  Google Scholar 

  11. J. J. Halliwell (2003), quant-ph/0301117.

  12. Halliwell J.J.(2004). Contemp. Phys 46: 93

    ADS  Google Scholar 

  13. Teitelboim C. (1982). Phys. Rev. D 25: 3159

    Article  ADS  MathSciNet  Google Scholar 

  14. Halliwell J.J., Thorwart J. (2002). Phys. Rev. D 65: 104009

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Seidewitz, J. Math. Phys. 47, 112302 (2006), quant-ph/0507115.

    Google Scholar 

  16. Halliwell J.J., Thorwart J. (2001). Phys. Rev. D 64: 124018

    Article  ADS  MathSciNet  Google Scholar 

  17. Feynman R.P. (1948). Rev. Mod. Phys. 20: 367

    Article  ADS  MathSciNet  Google Scholar 

  18. Feynman R.P., Hibbs A.R. (1965). Quantum Mechanics and Path Integrals. McGraw Hill, New York

    Google Scholar 

  19. Horwitz L.P., Piron C. (1973). Helv. Phys. Acta 46: 316

    Google Scholar 

  20. Fanchi J.R., Collins R.E. (1978). Found. Phys. 8: 851

    Article  MathSciNet  ADS  Google Scholar 

  21. Land M.C., Horwitz L.P.(1991). Found. Phys 21: 299

    Article  MathSciNet  ADS  Google Scholar 

  22. Frastai J., Horwitz L.P. (1995). Found. Phys. 25: 1485

    Article  ADS  Google Scholar 

  23. Enatsu H.(1963). Prog. Theor. Phys 30: 236

    Article  ADS  MathSciNet  Google Scholar 

  24. Enatsu H. (1986). Nuovo Cimento A 95: 269

    Article  ADS  Google Scholar 

  25. Feynman R.P.(1949). Phys. Rev 76: 749

    MATH  Article  ADS  MathSciNet  Google Scholar 

  26. Hartle J.B., Marolf D. (1997). Phys. Rev. D. 56: 6247

    Article  ADS  MathSciNet  Google Scholar 

  27. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Pitman, London, 1981), translated by E. R. Dawson from Teoriya Lineĭnykh Operatorov V Gilbertovom Prostranstve, 1978.

  28. Muynck W.M.D.(2002). Foundations of Quantum Mechanics, an Empericist Approach. Kluwer Academic, Dordrecht

    Google Scholar 

  29. Griffiths R.B. (2002). Consistent Quantum Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  30. J. B. Hartle, in Quantum Cosmology and Baby Universes: Proceedings of the 1989 Jerusalem Winter School for Theoretical Physics, S. Coleman, J. Hartle, T. Piran, and S. Weinberg, eds. (World Scientific, Singapore, 1991).

  31. Weinberg S.(1995). The Quantum Theory of Fields, Vol 1 Foundations. Cambridge University Press, Cambridge

    Google Scholar 

  32. Horwitz L.P., Rohrlich F. (1981). Phys. Rev. D 24: 1528

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Graham, in The Many Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1973).

  34. Hartle J.B. (1968). Am. J. Phys. 36: 704

    Article  ADS  Google Scholar 

  35. A. Kent, Int. J. Mod. Phys. A 1745 (1990).

  36. E. J. Squires, Phys. Lett. A 67 (1990).

  37. Zurek W.H.(2003). Rev. Mod. Phys. 75: 715

    Article  ADS  MathSciNet  Google Scholar 

  38. Zurek W.H. (2005). Phys. Rev. A 71: 052105

    Article  ADS  MathSciNet  Google Scholar 

  39. Hartle J.B., Hawking S.W. (1983). Phys. Rev. D 28: 2960

    Article  ADS  MathSciNet  Google Scholar 

  40. Zurek W.H.(1998). Philos. Trans. R. Soc. Lond. A 356: 1793

    Article  ADS  MathSciNet  Google Scholar 

  41. DeWitt B.S., Graham N. (eds) (1973). The Many Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ed Seidewitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seidewitz, E. The Universe as an Eigenstate: Spacetime Paths and Decoherence. Found Phys 37, 572–596 (2007). https://doi.org/10.1007/s10701-007-9123-y

Download citation

Keywords

  • path integrals
  • relativistic quantum mechanics
  • quantum cosmology
  • relativistic dynamics
  • decoherence
  • consistent history interpretation

PACS Numbers

  • 03.65.Ca
  • 03.65.Db
  • 03.65.Ta
  • 03.65.Yz
  • 11.10.-z
  • 11.80.-m