The Etherino and/or the Neutrino Hypothesis

By using a language as accessible to as broad an audience as possible, in this paper we identify serious insufficiencies of the neutrino and quark hypotheses for the synthesis of the neutrons from protons and electrons inside stars according to the familiar reaction \({{\rm p}^+ + \bar {\nu} + {\rm e}^-\rightarrow {\rm n}}\) . We introduce, apparently for the first time, the hypothesis that the energy and spin needed for the synthesis of the neutron originate either from the environment or from the ether conceived as a universal medium with very high energy density via an entity here called etherino, denoted with the letter “a” (from the Latin aether), carrying mass and charge 0, spin \({1\over 2}\) and 0.78 MeV energy according to the synthesis \({{\rm p}^+ + {\rm a} + {\rm e}^-\rightarrow {\rm n}}\) . We identify the compatibility \({{\rm p}^+ + {\rm a} + {\rm e}^-\rightarrow {\rm n}\rightarrow {\rm p}^+ + {\rm e}^- + \bar \nu}\) and the incompatibility condition \({{\rm p}^+ + {\rm a} + {\rm e}^-\rightarrow {\rm n}\rightarrow {\rm p}^+ + {\rm e}^- + \bar{{\rm a}}}\) of the neutrino and etherino hypotheses, the latter representing the possible return of missing features to the ether, without being necessarily in conflict with neutrino experiments. We review the new structure model of the neutron and hadrons at large with massive physical constituents produced free in the spontaneous decays as permitted by the covering hadronic mechanics. We show its compatibility with the standard model when interpreted as only providing the final Mendeleev-type classification of hadrons. We point out basically new clean energies predicted by the new model. We indicate new experiments confirming the above studies although in a preliminary form. Finally, we conclude with the proposal of new experiments suggested for the much needed search of new clean energies.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    (a) H. Rutherford,Proc. Roy. Soc. A 97, 374 (1920); (b) J. Chadwick, Proc. Roy. Soc. A 136, 692 (1932); (c) W. Pauli, Handbruch der Physik, Vol. 24 (Springer, Berlin, 1933); (d) E. Fermi, Nuclear Physics (University of Chicago Press, 1949); (e) M. Kaku, Quantum Field Theory (Oxford University Press, New York, 1993).

  2. 2.

    (a) E. R. Bagge, World and Antiworld as Physical Reality (Haag-Herchen, Frankfurt, 1994); (b) A. Franklin, Are There Really Neutrinos? (Westview Press, Boulder, 2000); (c) H. E. Wilhelm, Hadronic J. 27, 349 (2004); (d) R. L. Moessbauer, J. Phys. C 3, 121 (1984); (e) J. Fanchi, Hadronic J. 28, 717 (2006).

  3. 3.

    (a) R. M. Santilli, Found. Phys. 11, 383 (l981); (b) R. M. Santilli, Hyperfine Interact. 109, 63 (1997); (c) R. M. Santilli, in Proceedings of the XVIII Workshop on Hadronic Mechanics, V. Dvoeglazov, T. Gill, P. Rowlands, and E. Trell, eds. (International Academic Press, 2006, also available at http://arxiv.org/abs/physics/0603262).

  4. 4.

    (a) R. M. Santilli, Elements of Hadronic Mechanics, Vol. III: Recent Advances, Experimental Verifications and Industrial Applications (Naukova Dumka, Ukrainian Academy of Sciences, Kiev, in press, preliminary version available in pdf format at http://www.i-b-r.org/Hadronic-Mechanics.htm); (b) Foundations of Hadronic Chemistry with Applications to New Clean Energies and Fuels (Kluwer, Boston-Dordrecht-London, 2001); (c) Isodual Theory of Antimatter with Applications to Antigravity, Grand Unification and Cosmology (Springer, 2006).

  5. 5.

    (a) R. M. Santilli, Hadronic J. 13, 513 (1990); (b) R. M. Santilli, JINR Comm. E4-93-352 (1993); (c) R. M. Santilli, Hadronic J. 17, 311 (1994); (d) R. M. Santilli, in Large Scale Collective Motion of Atomic Nuclei, G. Giardina et al., eds. (World Scientific, 1997); (e) C. Borghi, C. Giori, and A. Dall’OIlio, J. Nucl. Phys. 56, 147 (1993); (f) N. F. Tsagas, A. Mystakidis, G. Bakos, and L. Seftelis, Hadronic J. 19, 87 (1996); (g) R. M. Santilli, The Physics of New Clean Energies and Fuels According to Hadronic Mechanics, Special Issue of the Journal of New Energy (1999); (h) R. M. Santilli, The structure of the neutron and nuclei according to hadronic mechanics, http://www.neutronstructure.org; (i) http://www.magnegas.com; (j) A. Garcia et al., Phys. Rev. C 47, 2910 (1993); (k) C.N. Ktorides, H. C. Myung, and R. M. Santilli, Phys. Rev. D 22, 892 (l980); (l) R. M. Santilli, Preprint IBR-EP-032-06, submitted for publication, preliominary version available in the arXiv with scans availab le at http://www.neutronstructure.org/neutron-synthesis.htm; (m) B. Bopp et al., Phys. Rev. Lett. 56, 919 (1986).

  6. 6.

    (a) R. M. Santilli, Hadronic J. 1, 224, 574, and 1267 (1978); (b) Algebras, Groups and Geometries 10, 273 (1993); (c) Rendiconti Circolo Matematico di Palermo, Suppl. 42, 7 (1996); (d) Found. Phys. 27, 635 (1997); (e) Found. Phys. Lett. 10, 307 (1997); (f) Intern. J. Modern Phys. A 14, 3157 (1999); (g) Nuovo Cimento B 121, 443 (2006).

  7. 7.

    (a) R. M. Santilli, Il Pungolo Verde 7, 23 (1956); (b) M. Jammer, The History of Theories of Space in Physics (Harvard University Press, 1954); (c) M. C. Duffy, ed., Ether, Spacetime and Cosmology (International Academic Press, to appear).

  8. 8.

    (a) H. C. Myung, Lie Algebras and Flexible Lie-Admissible Algebras (Hadronic Press, 1982); (b) A. K. Aringazin, A. Jannussis, D. F. Lopez, M. Nishioka, and B. Veljanoski, Santilli’s Lie-isotopic Generalization of Galilei’s and Einstein’s Relativities (Kostarakis Publishers, Athens, 1991); (c) D. S. Sourlas and G. T. Tsagas, Mathematical Foundations of the Lie-Santilli Theory (Ukrainian Academy of Sciences, Kiev, 1993); (d) J. Lôhmus, E. Paal, and L. Sorgsepp, Nonassociative Algebras in Physics (Hadronic Press, Palm Harbor, 1994); (e) J. V. Kadeisvili, Santilli’s Isotopies of Contemporary Algebras, Geometries and Relativities, 2nd edn. (Ukrainian Academy of Sciences, Kiev, 1997); (f) R. M. Falcon Ganfornina and J. Nunez Valdes, Fondamentos de la Isoteoria de Lie-Santilli (International Academic Press, America-Europe-Asia, 2001, also available in pdf format at http://www.i-b-r.org/docs/spanish.pdf); (g) Chun-Xuan Jiang, Foundations of Santilli’s Isonumber Theory with Applications to New Cryptograms, Fermat’s Theorem and Goldbach’s Conjecture (International Academic Press, America-Europe-Asia, 2002, also available in pdf format at http://www.i-b-r.org/docs/jiang.pdf).

  9. 9.

    (a) R. M. Santilli, Hadronic J. 8, 25 and 36 (1985); (b) JINR Rapid Comm. 6, 24 (1993); (c) Nuovo Cimento Lett. 37, 545 and 38, 509 (1983); (d) J. Moscow Phys. Soc. 3, 255 (1993); (e) Chinese J. Syst. Eng. Electr. 6, 177 (1996); (f) Intern. J. Modern Phys. A 14, 2205 (1999); (g) Acta Applicanbdae Math. 50, 177 (1998).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruggero Maria Santilli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santilli, R.M. The Etherino and/or the Neutrino Hypothesis. Found Phys 37, 670–711 (2007). https://doi.org/10.1007/s10701-007-9122-z

Download citation

Keywords

  • Decays of heavy neutrinos
  • ordinary neutrinos
  • protons and neutrons